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Numerical modelling offers the opportunity to better understand, predict, and 
optimise the behaviours of industrial systems, and thus provides a powerful 
means of improving efficiency, productivity and sustainability. However, the 
accurate modelling of industrial-scale particulate and particle–fluid systems 
is, due to the complex nature of such systems, highly challenging. This 
challenge arises primarily from three factors: the lack of a universally 
accepted continuum model for particulate media; the computational expense 
of discrete particle simulations; and the difficulty of imaging industrial-scale 
systems to obtain validation data. In recent years, however, advances in 
software, hardware, theoretical understanding, and imaging technology have 
all combined to the point where, in many cases, these challenges are now 
surmountable—though some distance remains to be travelled. In this review 
paper, we provide an overview of the most promising solutions to the issues 
highlighted above, discussing also the major strengths and limitations of 
each.
Keywords:	 discrete element method, two fluid model, kinetic theory of 
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1. Introduction
The handling and processing of particulate solids is of 

central importance to myriad processes in diverse indus-
tries, including (but by no means limited to) the chemical, 
defense, food, green energy, and pharmaceutical sectors 
(Seville et al., 2012). Indeed, particulate media are in-
volved in the production of more than 50 % of all goods 
sold worldwide (Blais et al., 2019). Despite their ubiquity, 
however, the mechanics of particulate solids remain poorly 
understood compared to ‘classical’ solids, liquids and 
gases. This lack of understanding manifests itself in indus-
try in many negative manners, spanning numerous unit 
operations, be it the woeful energy-efficiency of processes 
such as milling (Holmberg et al., 2017), the tendency of 
hoppers and feeders to become ‘jammed’ (Schulze, 2014), 
or the highly unpredictable nature of mixing and segrega-
tion between non-identical species of particles 
(Windows-Yule et al., 2015). If we wish to reduce waste, 

increase efficiency, and in general develop more robust and 
sustainable manufacturing methods, we must improve our 
understanding of particulate media. In industrial processes 
involving fluids, a digital, ‘Industry 4.0’ approach to the 
optimisation of industrial equipment has already been 
widely adopted thanks to the wide availability of user- 
friendly computational fluid dynamics (CFD) software, 
and the ability of CFD to efficiently numerically model the 
flow dynamics of large, pilot/industrial-scale systems. The 
adoption of such digital approaches has been significantly 
slower for particulate media, however. There are several 
reasons underlying this slow adoption, but most can be 
traced back to the complexity of particulate materials, 
meaning that—to date—there does not exist a universally 
accepted particulate equivalent to the Navier–Stokes equa-
tions, and thus few commercially available, generalisable, 
“plug and play” CFD equivalents capable of (accurately) 
modelling industrial scale systems.

There are currently two main approaches to the model-
ling of industrial particle-handling systems: the discrete 
element method (DEM), which models all particles within 
a system as individual, discrete objects, and the kinetic 
theory of granular flows (KTGF), which takes a continuum 
approach similar to CFD, but solves equations that have 
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been modified to represent particulate or multiphase flows1. 
A brief overview of each technique is provided in Sections 
2 and 3. Each of these techniques suffers from its own 
distinct limitations. DEM has been widely shown to facili-
tate the quantitatively accurate simulation of particulate 
systems (Coetzee, 2017), but in its standard form is highly 
computationally demanding (Golshan et al., 2023). KTGF 
simulations are significantly more efficient, but the model-
ling assumptions required to describe a discrete, particulate 
system as a continuous medium make calibration and 
(thus) quantitative accuracy much more challenging to 
achieve.

Nonetheless, in recent years, improvements in hardware, 
software, and the development of new theoretical models 
mean that the tractable, accurate modelling of industrial 
systems is achievable—albeit with some limitations and 
caveats. In this review article, we provide an overview of 
the most promising contemporary methods for modelling 
industrial-scale particulate systems, highlighting their indi-
vidual strengths and weaknesses, and summarising import-
ant recent developments.

2. Discrete methods
2.1 Overview of the discrete element method 

(DEM)
The discrete element method is currently the most com-

mon method for the numerical modelling of particulate 
systems. Though its efficient implementation can be highly 
challenging, the underlying concept of DEM is exceed-
ingly simple: each individual particle within a given system 
is modelled as a distinct computational object, and assigned 
all the relevant properties of a ‘real’ particle—i.e. a position 
in space, a mass, a size, a friction coefficient etc. Each 
simulated particle within a DEM simulation is also subject 
to the relevant forces one may expect in a ‘real’ system, 
most notably gravity, and relevant ‘contact forces’ experi-
enced during collisions with other objects. By coupling 
DEM with CFD, drag and other fluid forces may also be 
simulated (El Geitani et al., 2023). The sum of these forces 
may be used to predict the net force acting on a given par-
ticle at a given point in time (see Fig. 1), and from this and 
the particle’s known mass, the instantaneous acceleration 
acting upon it. This, in turn, may be used to predict the ve-
locity, and thus position, of the particle at some future point 
in time (assuming that the ‘timestep’ between this future 
point and the present point in time is small enough that the 
particle experiences no significant change in acceleration).

By repeating the above process again and again—effec-
tively stepping through time in pseudo-infinitesimal incre-
ments—one may thus simulate the motion of a system of 

particles. By tuning the relevant parameters (friction coeffi-
cients, restitution coefficients, cohesive properties...) used 
to represent the interactions between particles, this simu-
lated motion can be brought into quantitative alignment 
with the dynamics of the real system being modelled 
(Windows-Yule et al., 2016; Windows-Yule and Neveu, 
2022)2. A significant shortcoming of the discrete element 
method, however, is its computational expense. Unlike 
CFD, each individual particle within a system must be indi-
vidually modelled, meaning that the time required to run a 
simulation increases sharply with the number, N, of parti-
cles being simulated. Indeed, even with a highly optimised 
DEM engine, computation time can be expected to scale as 
N log N (Thompson et al., 2022). This shortcoming typi-
cally hampers efforts to simulate industrial-scale systems. 
In the following sections, we discuss some of the main 
ways in which this issue may be circumvented. It should be 
noted that the above provides only a rather crude overview 
of DEM. A more detailed yet still accessible introduction to 
the discrete element method can be found in Chapter 4 of 
reference (Rosato and Windows-Yule, 2020), and a deeper 
dive in reference (Luding, 2008).

2.2 Parallelisation and GPU acceleration
As discussed in the preceding section, the computational 

expense of a simulation—that is to say, the required num-
ber of CPU (central processing unit) operations required to 
simulate a system—increases monotonically with the 
number of particles, N, simulated. As each operation takes 
a finite time to perform, this means that, for simulations run 
on a single CPU core, the time required to run a simulation 

2 The calibration of numerical simulations is a complex field in its own 
right, and has been the subject of several recent review articles 
(Ketterhagen and Wassgren, 2022; Windows-Yule and Neveu, 2022) and 
as such will not be discussed in detail here.

1 While these are certainly not the only available methods, they are decid-
edly the most commonly-applied, and thus will form the focus of this 
review.

Fig. 1  A schematic illustration of two interacting DEM particles. Par-
ticle i is subject to a gravitational force 
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[1] 

 proportional to its mass mi, 
and a contact force Fji due to contact with a second particle j. The net 
force Fi acting on the particle is used to predict its position and velocity 
at the next point in time. Reproduced with permission from (Rosato and 
Windows-Yule, 2020).
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increases with time. One of the simplest methods through 
which to reduce the time required is thus simply to split this 
effort across multiple CPUs—a process known as ‘parallel-
isation’ (Sawley and Cleary, 1999). Like DEM itself, the 
implementation of a parallelisation strategy may be com-
plex, but the strategy itself is conceptually very simple: the 
computational volume is subdivided into two or more dis-
tinct regions (see e.g. Fig. 2) and each region is assigned its 
own CPU, which only performs operations for particles 
falling within said region. Thus, for a perfectly implemented 
parallelisation strategy, a simulation using two CPU cores 
might be expected to run in half the time of an equivalent 
‘serial’ simulation, a simulation parallelised across 4 cores 
in a quarter of the time, and so on. With access to a suitable 
high-performance computing (HPC) system, one may hy-
pothetically speed up a simulation hundreds or even thou-
sands of times, and thus simulate numbers of particles 
which would be simply unfeasible using a single CPU.

In reality, however, such ‘linear’ speed-up is not easy (or, 
in absolute terms, possible) to achieve for several reasons. 
Firstly, to achieve linear speed-up, the computational load 

must be balanced equally across all processors, meaning 
that the individual domains into which the computational 
volume is divided must be sensibly chosen. For example, in 
Fig. 2, the division shown in the top-most panel (which 
exploits the uniformity of the system along the axial direc-
tion) is significantly more efficient than that shown in the 
middle panel, where the lower domain contains many more 
particles than the upper domain. In the bottom panel, we 
see that one of the processors is entirely unused, making 
this an exceedingly inefficient configuration—yet one that 
is often accidentally used by DEM practitioners who leave 
their parallelisation schemes on default settings! In recent 
years, however, the use of ‘dynamic load balancing’ algo-
rithms—which, as their name suggests, automatically opti-
mise the spread of computational load across processors 
—have become increasingly common (Golshan and Blais, 
2021; Yan and Regueiro, 2018). As such, in the future, this 
particular problem is likely to be less frequently encoun-
tered. Dynamic load balancing schemes, unlike ‘manual’ 
methods, also allow the distribution of processor power to 
be adjusted during simulation, allowing for even greater 
efficiency savings.

The second major issue to consider when parallelizing 
DEM is that a finite ‘overlap’ or ‘communication region’ 
must exist between all adjacent domains3 allowing infor-
mation (e.g. contacts between particles) from one domain 
to be passed to another. It is this restriction which ulti-
mately provides an upper bound on the degree of speed-up 
which may be achieved through parallelisation: if a simula-
tion is ‘sliced too thinly’—for example if the width of a 
domain is smaller than the width of a particle—then no 
speed-up can be achieved (indeed the simulation may even 
become slower due to the increased overheads of such a 
scheme (Eibl and Rüde, 2019)).

In addition to CPU processing, the past decade has seen 
a considerable rise in interest in the use of GPU (graphics 
processing unit) computation in DEM (Fang et al., 2021; 
Govender et al., 2014; Lisjak et al., 2018; Lu, 2022; 
Spellings et al., 2017; Steuben et al., 2016; Wang et al., 
2021). Though the development of GPUs has been largely 
driven by the desire for improved 3D graphics in the gam-
ing and film industries (Das and Deka, 2016), their innate 
capability to efficiently perform highly-parallelised com-
putations makes them well suited to the speed-up of DEM 
simulations (Govender et al., 2014).

The advent of GPU computing has not only helped to 
increase the number of particles that can realistically be 
simulated on a single PC (as opposed to the HPC clusters 
required for large-scale parallel CPU computations), but 
has also played a role in overcoming another major limita-
tion of DEM—the difficulty of (efficiently) modelling 
aspherical particles (Govender et al., 2014; Spellings et al., 
2017; Wang et al., 2021), which are all but ubiquitous in 
industry. The computational complexity of detecting  

3 It is for this reason that perfectly linear scaling is never fully possible in 
the parallelisation of DEM simulations, though for well-chosen schemes 
may come very close (Markauskas and Kačeniauskas, 2015).

Fig. 2  Examples of possible parallelisation schemes for a simulated 
rotating drum (Herald et al., 2022).
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collisions between simulated particles is significantly 
higher for aspherical particles than for simple spheres, 
meaning that historically a majority of DEM practitioners 
have preferentially used the latter, even when attempting to 
model the former. While under certain conditions the mod-
elling of aspherical particles as spheres can produce quan-
titatively accurate results (Che et al., 2023a), this is not 
always the case, especially when considering denser pack-
ings and/or more elongated, ‘needle-like’ particles (Rhodes, 
2008). Recently developed GPU-accelerated codes capable 
of modelling particles with arbitrary polyhedral geometries 
(Govender et al., 2014; 2015) thus represent a significant 
step toward the simulation of truly representative industrial 
systems.

It is important to note that, even with recent advances in 
both DEM software and computer hardware, DEM simula-
tions are still typically limited to billions of particles 
(Kosaku et al., 2021), whereas in industrial systems the re-
quired numbers may easily reach the trillions or quadril-
lions. As such, the methods described here are often used in 
conjunction with other methods, notably the coarse-grain-
ing technique introduced in the next section.

For example, the MFIX-Exa Exascale Computing Proj-
ect (ECP) (Musser et al., 2022) is currently developing a 
CFD–DEM architecture for future “exascale” supercom-
puters—i.e. capable of executing 1018 operations per sec-
ond—for high-fidelity simulations of multiphase systems 
specifically targeted at carbon capture and storage. MFIX-
Exa is based on the AMReX (Zhang et al., 2021b) software 
framework, which provides the data structures and iterators 
to enable massively parallel simulation, and allows simula-
tions to be run using Nvidia, AMD, and Intel hardware. 
Using MFIX-Exa, a simulation of a pilot-scale 50 kW 
chemical looping reactor involving 5 billion particles and 
2.5 billion fluid cells has been run on the Frontier super-
computer on 62,000 GPUs, with each GPU processing 
14,080 stream processors and 128 GB of memory.

2.2.1 Pros and cons
The most notable benefit of accelerating DEM simula-

tions through hardware and parallelisation alone is that—
unlike for the coarse-graining method discussed in Section 
2.3 and the continuum methods described in Section 3—
the system is still simulated at full resolution (i.e. all parti-
cles are directly, individually modelled). As such, this 
technique does not require the introduction of additional 
modelling assumptions, and in most cases the calibration 
parameters used to develop the system have real, physical 
meaning.

A major drawback to these methods is that significant 
speed-up requires access to significant computational re-
sources. The inherent costs associated with acquiring and 
maintaining the necessary hardware are thus likely to price 
many smaller companies out of the market. That said, the 

rise of on-demand cloud computing platforms such as 
AWS, Microsoft Azure, Google Cloud Platform etc. has, to 
an extent, lowered this barrier, and will likely continue to 
do so over the coming years and decades.

A second issue with fully resolved DEM simulations is 
that, with current hardware, we can still ‘only’ simulate of 
the order of billions of particles, yet in industry one may 
easily reach the trillions or even quadrillions. While, in the 
long term, these numbers will inevitably improve in lock-
step with the advancement of computer hardware, in the 
shorter term, if we wish to simulate such systems, then 
parallelisation and GPU acceleration can only form part of 
the solution, and must be used in combination with some of 
the other techniques discussed below.

2.3 Coarse-grained DEM (CG or CDEM)
As discussed in the preceding sections, the time—or, 

more specifically, the processor time—required to perform 
a given simulation increases monotonically with the num-
ber of particles to be simulated. As such, if we are able to 
represent multiple particles with a single ‘pseudo-particle’ 
then the computational expense of said simulation will 
naturally decrease. This is the underlying principle of the 
coarse-graining technique which lumps several distinct 
particles into a single ‘coarse grain’ or ‘computational par-
ticle’ (Patankar and Joseph, 2001).

All CG techniques available in the literature consider 
particles within a parcel to have the same properties and 
velocities—i.e. there can be no gradients within a parcel. In 
this way, CG is somewhat similar to continuum methods 
such as the two-fluid model (discussed in Section 3), where 
no gradients of particle properties (velocity, temperature 
et.) are allowed within a cell. Due to this similarity, the 
term ‘coarse graining’ is also widely employed to describe 
the post-processing of DEM data to represent continuum 
fields (Goldhirsch, 2010; Weinhart et al., 2012), or the 
smoothing of discrete data to be transferred to CFD for the 
calculation drag correlations in coupled CFD–DEM simu-
lations (Che et al., 2021; Labra et al., 2013). As can be seen 
from Fig. 3, in recent years there has been a seemingly ex-
ponential increase in the number of papers published con-
cerning coarse-graining, which is likely related to an 
increased interest in the use of DEM to simulate industrial 
systems (Di Renzo et al., 2021).

A coarse-grained pseudo-particle is typically character-
ised by the number, W, of particles represented by each 
cluster, and the coarse-graining ratio, λ = dcg/d, where d is 
the (linear) size of a ‘normal’ particle and dcg is that of a 
coarse-grained parcel of such particles, where λ3 = W. It is 
typically assumed that the mass and volume of a coarse 
grain are equal to the sum of the masses and volumes of the 
constituent particles. Even in a publication where the par-
cel is assumed to have a non-zero void fraction for dilute 
flows (Lu et al., 2014), this void fraction is considered to 
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tend to zero at packing. Though the assumption of a parti-
cle packing with zero void fraction is obviously unphysical 
for all except a very small subset of particle geometries and 
system conditions, said assumption allows the user to keep 
the same initial bed weight and height in coarse-grained 
DEM (CDEM) that would be expected in conventional 
DEM.

As one may intuitively expect, the physical properties of 
a coarse-grained pseudo particle do not necessarily have a 
one-to-one mapping to those of their constituent particles. 
Notably, one must typically lower the restitution coefficient 
as energy dissipation in a particulate system is a function of 
particle number density, which by definition decreased 
when the size of particles is increased (Benyahia and 
Galvin, 2010; Lu et al., 2014). There exist numerous scal-

ing laws through which authors have attempted to relate the 
properties of individual particles to their CG equivalents. 
Perhaps the most commonly used is that of Sakai (Sakai, 
2016) in which all forces are scaled by λ3, thus providing 
the same overlap for the parcel and real particle, as well as 
the same spring constant, restitution coefficient, and fric-
tion coefficients. Where the Sakai method ensures a con-
stant absolute overlap between parcel and particle, the 
approach of Queteschiner et al. (2018b) instead ensures the 
same relative overlap by scaling the spring constant by λ. 
There exist also a number of other scaling approaches, see 
for example (Che et al., 2023b; de Munck et al., 2023; 
Kishida et al., 2021; Kushimoto et al., 2021; Nasato et al., 
2015; Sakai, 2016; Zhang et al., 2021a), including ap-
proaches for modelling cohesive particles (Chen and 
Elliott, 2020; Nasato et al., 2015; Sakai et al., 2012), sys-
tems in which liquid bridges are present (Chan and 
Washino, 2018; Zhang et al., 2021a), aspherical particles 
(Zhou et al., 2022) and even heat and mass transfer (Lu et 
al., 2017b)—matters of considerable importance in many 
industrial processes. Interestingly, recent comparative stud-
ies have found a surprising lack of differentiation between 
simulations employing different coarse-graining models 
(Che et al., 2023b; de Munck et al., 2023); however, both 
studies used fluidised beds as their benchmarking systems. 
Since, in these systems, particle dynamics are largely dom-
inated by drag effects as opposed to particle–particle inter-
actions, it is unclear whether the same degree of similarity 
could be expected in denser systems, and in particular  
single-phase particulate systems.

As alluded to at the start of this section, all particles 
forming a CG parcel must possess the same properties 

Fig. 3  Number of indexed articles published per year concerning 
coarse-grained DEM. Image reproduced from reference (Di Renzo et 
al., 2021).

M2:
Same Size Parcel

Efficient for computa�on

Original System

M1:
Same Sta�s�c Weight

Same PSD is maintained

Fig. 4  Simple schematic depicting the two methods for the coarse-graining of polydisperse systems described in the main text. Adapted with permis-
sion from Ref. (Lu et al., 2018). Copyright: (2018) Elsevier Ltd.
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—including particle size. As such, when coarse-graining 
highly polydisperse systems (as are commonly found in 
industry) one must determine a suitable manner in which to 
represent the particle size distribution (PSD). There are two 
main ways to do so: the same statistical weight (SSW) 
method, in which the same number of particles are included 
in parcels corresponding to each size fraction, and the same 
size parcel (SSP) method in which (as the name implies) 
the size of the particles is instead kept constant. These 
methods are depicted schematically in Fig. 4. While the 
latter method is naturally more efficient, it is arguable that 
the former provides a more ‘realistic’ representation of the 
original PSD, and in some cases produces greater accuracy 
(Lu et al., 2018).

A notable limitation of the CG method is that in certain 
systems with heterogeneous geometries (e.g. hoppers 
(Coetzee, 2019)), coarsening cannot be conducted in the 
whole geometry due to flow restrictions. In such cases, it 
has been shown possible to locally refine CDEM back to 
DEM, or simply to a lower level of coarse-graining (De et 
al., 2022; Queteschiner et al., 2018a, 2018b).

Due to the different assumptions in CDEM, it is import-
ant to validate this method against data obtained with both 
finer DEM methods and experiments (discussed in further 
detail in Section 4). One can envision a series of validation 
studies by first comparing the simulation results of CDEM 
and DEM. Differences between the two simulation results 
can be quantified as uncertainties (UQ) due to the 
coarse-graining assumption. The UQ analysis can be ex-
tended to DEM simulation data through comparison with 
resolved DEM and/or DNS (dependent on the nature of the 
system studied) to quantify errors due to the assumed forms 
of fluid–particle interaction terms. Finally, the resolved 
DEM/DNS data can be compared with small-scale well- 
instrumented experimental setups where the experimental 
errors are carefully quantified. There exist limited exam-
ples of such a ‘cascading series’ of UQ missing in the liter-
ature due to the inherent complexity of conducting such 
numerical simulations and experiments for many different 
scenarios. Nevertheless, many attempts to validate CDEM 
with both finer DEM and experimental data are available in 
the literature.

Mori et al. (2019) compared bed height and pressure 
drop in a small-scale experimental dense fluidised bed of 
0.05 m diameter using a factor λ of between 5 and 10.

Oyedeji et al. (2022) validated CDEM for biomass 
(corn) pyrolysis reactions in a small-scale reactor of 0.15 m 
diameter with a coarsening factor W = 10 and 20, and at 
this low level of coarsening (real particles were already 
coarse), the results showed simulation data within a few 
percent of experimental pyrolysis reaction yields.

Zhou and Zhao (2021) conducted CDEM simulations of 
a small-scale fluidised bed with an immersed tube with λ up 
to 3 which resulted in up to two orders of magnitude simu-

lation speed-up for the discrete phase (the fluid solver re-
quired significant CPU effort and is not included in this 
comparison). Obvious agreement of bed expansion height 
and pressure drop reported as these are roughly equal to the 
weight of the bed, however noticeable disagreement was 
observed for the velocity profiles for different coarsening 
levels as compared with finer DEM results.

Wang and Shen (2022) studied biomass gasification in a 
small-scale dense fluidised bed reactor of 0.05 m diameter. 
CDEM results were validated against both finer DEM sim-
ulations and experimental data for CG ratios λ = 2, 3, with 
an order of magnitude speed-up of obtained by using 
CDEM.

A study of a small-scale gas-particle cyclone separator 
for monodisperse particles of 0.5 mm diameter using λ = 4 
was conducted recently by Napolitano et al. (2022). The 
numerical results were observed to degrade with increasing 
λ, likely due to the small number of parcels used.

Sakai et al. (2014) validated CDEM in a small-scale flu-
idised bed where good agreement of bed height and pres-
sure drop were obtained with for λ = 5. This study and 
many others in the literature compared only the bed height 
and pressure drop, commonly measured experimentally, 
indicating a good agreement because the weight of the bed 
and the drag laws are usually sufficiently accurate for flui-
dised beds. Less accuracy is usually observed for quantities 
that are affected by collisions, such as particle velocity and 
granular energy.

Lungu et al. (2022) conducted a validation study of 
CDEM in a small-scale fluidised bed containing large 
3 mm particles with values of λ up to 2. Their results 
showed little sensitivity of simulation time to λ due to the 
small number of parcels used, which is usually an indica-
tion that the fluid solver is taking most of the CPU time. In 
fact, many cases in the literature that compare CDEM to 
finer DEM results use a small system with a relatively 
small number of particles so that a DEM simulation can be 
conducted. These simulations are not able to validate 
CDEM for a large parcel-to-particle ratio. Such results 
provide a useful cautionary tale for researchers—it is im-
portant to know whether the computational costs of your 
simulation are dominated by the particle phase or the fluid 
phase. If the latter, the application of coarse-graining may 
degrade one’s results whilst not achieving any significant 
speed-up!

Takabatake et al. (2018) compared CDEM and DEM 
results in a small-scale spouted bed using λ values of 2 and 
3, achieving respectively a factor of 8- and 30-times 
speed-up, while maintaining similar mixing patterns to 
those obtained in resolved DEM simulations.

Coetzee (2017) found that while λ values of up to 9 can 
be used to accurately model dynamic angles of repose in a 
medium-scale rotating drum as long as the drum-to-particle 
diameter ratio is above 25, hoppers showed a much  
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stronger dependence on the scaling factor, with hopper 
discharge only being reasonably predicted for λ values up 
to 1.3. However, λ = 1.3 still provided a decrease in compu-
tational time by a factor of 3.2, showing both the usefulness 
and care required in using CDEM.

Cai and Zhao (2020) conducted a validation study of 
CDEM in a small-scale drum and conical mixer with λ = 3 
and obtained reasonable agreements for mixing time and 
power consumption whilst achieving a speed-up of almost 
two orders of magnitude.

Other small-scale CDEM simulations have demon-
strated the validity of this technique in powder die-filling 
using λ = 3 (Widartiningsih et al., 2020), and for a dry 
powder inhaler where only fine particles were coarsened 
(Liu et al., 2021).

Most recently, Che et al. (2023b) applied values of λ up 
to 30 to a laboratory-scale fluidised bed of Geldart group B 
particles, providing detailed comparison both to lower de-
grees of coarse graining (due to the number of particles in 
the system, fully resolved DEM was not computationally 
tractable) as well as experimental data obtained using pos-
itron emission particle tracking (Windows-Yule et al., 
2020; 2022a). It was found that values of λ up to ~20 still 
produced good agreement with experimental data, despite 
the comparatively small size of the system and the rigorous 
validation methods implemented.

As is evident from the above-discussed studies, the ma-
jority of existing studies have focused on smaller laboratory- 
scale systems, as opposed to larger-scale flow systems of 
greater interest to industry. One reason underlying the lack 
of industrial-scale studies may be the difficulty in obtaining 
accurate experimental data in large systems, which makes 
such data less available in the literature. This issue—and 
potential solutions to it—are discussed in Section 4. Nev-
ertheless, some such studies do exist. Work by Lu et al. 
(2017a) and Lu and Benyahia (2018a) has included the 
simulation of pilot-scale catalytic crackers and regenera-
tors, methanol to olefin reactors, and rare-earth elements 
solid-liquid extractors, none of which could feasibly have 
been simulated using resolved (non-coarse-grained) DEM.

Stroh et al. (2018) studied a pilot-scale circulating flui-
dised bed carbonator of approximately 0.6 m diameter and 
9 m height during stable operation by CDEM, using a 
coarsening factor λ = 60. Reasonable comparison between 
simulation and the available experimental data of pressure 
drop and CO2 absorption rate was obtained. The same 
group later studied a smaller (0.2 m diameter, 3 m height) 
cold-flow circulating fluidised bed, this time instrumenting 
the system with a capacitance probe to allow more detailed 
experimental validation.

Nikolopoulos et al. (2017) compared the performance of 
CDEM and two-fluid model (TFM—see Section 3) ap-
proaches for a 1 MWth pilot-scale fluidised bed carbonator 
of 0.6 m diameter and 8.7 m height. The CDEM approach 

compared well with experimental pressure-drop data, 
whilst also achieving a reasonable computation time, simi-
lar to the TFM simulation.

Hu et al. (2019) conducted CDEM simulations of a  
medium-scale (0.22 m width by 2 m height) fluidised bed 
coal gasifier in the bubbling regime with λ = 5. Their re-
sults were compared to both previously published TFM and 
experimental results, demonstrating a good degree of accu-
racy.

In 2019, a medium-scale biomass gasification reactor of 
1.3 m height with a diameter varying from 0.08 to 0.2 m 
CDEM study was pursued by Ostermeier et al. (2019b) 
who also provided a nice summary of the different CFD 
approaches to model biomass gasification in fluidised bed 
reactors. Large values of λ up to 50 were used to represent 
the finest particles due to consideration of the wide PSD of 
sand and biomass particles. This level of coarsening al-
lowed the authors to validate the technique over a long 
range of operating hours, and found good agreement with 
available experimental data of bed pressure and tempera-
ture as well as chemical products of the gasification reac-
tions.

Prior authors have already conducted CDEM simula-
tions of industrial-scale gas–particle cyclone separators 
(Chu et al., 2016, 2022; Ji et al., 2018). In the 2022 work of 
Chu et al. (2022), the models used could accurately predict 
the cyclone efficiency and the formation of ribbons of par-
ticles in the cyclone.

2.4 Pros and cons
In summary, the past two decades of research have 

demonstrated the ability of CDEM to tackle complex,  
industrially relevant problems in chemical engineering. 
CDEM can provide solutions with almost any computer 
resources available to the engineer, ranging from a desktop 
computer to the most powerful supercomputers, and still 
produce a good representation of the systems being mod-
elled. The main challenge at present regarding CDEM is 
the lack of consensus regarding the mapping of the proper-
ties of ‘true’ particles to those of coarse-grained ‘meso- 
particles’. More research is also necessary to evaluate the 
uncertainties associated with the coarsening assumption 
keeping in mind that DEM solutions are available for UQ 
analysis (Lu and Benyahia, 2018b).

2.5 Mapping-based extrapolation
Perhaps the most recent development in the speed-up of 

discrete particle simulations is the ‘mapping-based extrap-
olation’ technique, originally developed by Bednarek et al. 
(2019). Mapping-based extrapolation techniques exploit 
the pseudo-periodic behaviour of processes. The periodic 
time is a process-inherent variable and does not depend on 
any DEM parameters. The period is several orders of  
magnitude larger than the DEM integration time steps. 

https://doi.org/10.14356/kona.2025007


C. R. Kit Windows-Yule et al. / KONA Powder and Particle Journal No. 42 (2025) 15–36 Review Paper

22

Examples of a process period could be one rotation of 
mixing blade, or the time between refills of a twin-screw 
feeder.

The method uses two simulation states taken at time 
points t0 and t1. These two points represent, respectively, 
the start and end points of the periodic time (or an integer 
multiple of periods). Fig. 5 shows a sketch of the mapping- 
based extrapolation. The numbers in the figure pertain to 
the following key steps of the algorithm:
1.	The trajectory of particle #1 from t0 to t1 is known from 

the simulation states. However, the particle did not leave 
the system at t1 (continuous process) or the process has 
not ended at t1 (batch process).

2.	Although the exact trajectory of particle #1 after t1 is not 
known, it makes intuitive sense that it will be very simi-
lar to a particle that started at a similar position at t0.

3.	A neighbour search finds that particle #4 has a similar 
starting position where particle #1 ended.

4.	The extrapolated trajectory of particle #1 uses the data 
for particle #4. This process is repeated until the particle 
leaves the system (continuous process) or the process 
duration has been reached (batch process).
The exact mapping procedure depends on the applica-

tion. If the goal is to only extrapolate the trajectories of a 
subset of particles (e.g. tracer particles for a virtual spike 
experiment to characterise the residence time distribution), 
the mapping procedure is a nearest-neighbour search 
(Siegmann et al., 2021). However, if the goal is to extrapo-
late all particle positions, it makes sense to invest computa-
tional time in a bijective4 mapping function that minimises 
the average mapping error (i.e. the distance between the 
particles at t1 and their mapping partners at t0).

As a relatively young technique, mapping-based extrap-

olation does not have the same extensive back catalogue of 
example applications as coarse-graining, but nonetheless 
has demonstrated some success in the limited number of 
papers produced to date, accelerating DEM models of 
conical screw mixers (Jadidi et al., 2022), continuous 
blenders (Moreno-Benito et al., 2022), and tablet press feed 
frames (Forgber et al., 2022). The applications are not 
limited to DEM simulations, but can also be extended to 
other particle-based methods such as smoothed particle 
hydrodynamics (SPH), for example, in the accelerated 
modelling of twin screw extrusion processes (Bauer and 
Khinast, 2022; Bauer et al., 2022; Matić et al., 2023).

One hard requirement for mapping-based extrapolation 
is the existence of pseudo-periodic process behaviour. For 
example, the discharge of a twin-screw feeder from maxi-
mum to minimum fill level is an inherently transient pro-
cess and will never reach some kind of pseudo-periodicity: 
the fill level in the hopper of the feeder is constantly de-
creasing and causes constantly changing flow patterns 
(Toson and Khinast, 2019). Thus, mapping-based extrapo-
lation is not able to speed up the prediction of the discharge 
process. However, if periodic refills at the same fill level 
are considered, mapping-based extrapolation can predict, 
for example, the washout of old material over multiple re-
fills (Toson and Khinast, 2019).

A soft requirement for the successful application of the 
technique is the presence of dense flows in the process, as 
such flows offer multiple (good) mapping partners for each 
particle. The mapping error is then in the order of one par-
ticle radius (Siegmann et al., 2021). It is speculated that 
mapping-based extrapolation could be applied to more di-
lute flows at the expense of accuracy (Bednarek et al., 
2019), though there are currently no examples in literature 
to either support or disprove this. In addition, if the dilute 
particle flow is caused by interaction with air (e.g. in flui-
dised beds), it is generally a better idea to use the air flow 
field for extrapolation (Lichtenegger, 2020; Lichtenegger 
and Miethlinger, 2020; Lichtenegger and Pirker, 2020).

Fig. 5  Schematic overview of a mapping-based extrapolation algorithm. Image reproduced from Ref. (Siegmann et al., 2021). Copyright: (2021) 
Elsevier B.V.

4 Bijective mapping means that each particle in time step t1 has exactly one 
mapping target at t0, and that each particle at t0 is referenced by exactly 
one particle from t1. This optimised mapping function can then be used for 
all mapping steps and does not need ad-hoc neighbor searches in each 
mapping step.

https://doi.org/10.14356/kona.2025007


C. R. Kit Windows-Yule et al. / KONA Powder and Particle Journal No. 42 (2025) 15–36 Review Paper

23

2.5.1 Pros and cons
The main benefit of the mapping-based extrapolation 

method is that it allows significant speed-up yet, unlike 
coarse-graining methods, is still ‘fully resolved’—i.e. par-
ticles can be modelled at their true size, and calibrated us-
ing their ‘real’ properties. As such, for processes involving 
dense particle flows, the technique has been shown to facil-
itate high-accuracy simulations. It can also be applied to 
other particle-based methods such as SPH, thus allowing 
the acceleration of fluid simulations in a similar manner. 
The main drawbacks of the technique are that it is not suit-
able for transient (i.e. non-periodically-repeating) pro-
cesses and is currently untested for more dilute flows.

2.5.2 Recurrence CFD
It is worth, at the end of this section, briefly mentioning 

the existence of another technique—recurrence CFD 
(rCFD)—which provides another approach not dissimilar 
to the technique discussed above, though for fluid-phase 
(as opposed to particle) simulations. As the main focus of 
this work is on the particulate phase, we will not discuss 
rCFD in detail here, but rather point the reviewer to some 
useful references, namely (Lichtenegger et al., 2017; 
Lichtenegger and Pirker, 2016).

3. Continuum methods
As has been made abundantly clear in the preceding 

sections, the main limitation of discrete methods for the 
simulation of industrial-scale particulate systems is the 
computational expense of modelling each distinct particle 
individually. This problem can be overcome by instead 
modelling particulate media as continua, much as CFD 
does not consider the individual molecules forming a fluid. 
There are two crucial differences between particulate me-
dia and ‘classical’ fluids, however, that make the construc-
tion of a continuum formulation more complex:
I.	 Particulate media do not possess a reference equilibrium 

state.
II.	Their temporal and spatial scales are not well sepa-

rated—that is to say the scales of the dynamics of the 
individual particles are comparable to those of the bulk 
medium.
As put succinctly by the great Isaac Goldhirsch at the 

turn of the millennium, “the notion of a hydrodynamic or 
macroscopic description of granular materials is based on 
unsafe grounds and it requires further study” (Goldhirsch, 
1999). Since then, much ‘further study’ has indeed been 
conducted, to the point that accurate continuum models of 
diverse industrial systems can be found in the literature.

While continuum models exist for both pure particulate 
systems and multiphase particle–fluid systems, the vast 
majority of (successful) industrial-scale studies have been 
performed with the latter, and as such for the present re-
view we focus on the two-phase case.

The Eulerian–Eulerian Two-Fluid Model (TFM) treats 
both the liquid and solid phases as continua that can fully 
interpenetrate one another. When it comes to simulating the 
flow of particulate media, the remaining challenge is to 
develop closure laws for determining solid flow parame-
ters, such as dynamic/bulk viscosities, particle pressure, 
and interfacial momentum transfer in multi-sized systems. 
The Kinetic Theory of Granular Flow (KTGF) has been 
developed for this purpose. TFM has a lower computa-
tional cost compared to (CFD–)DEM and other  
frequently used approaches for granular flow modeling 
and, as a result, are better suited for simulating industrial- 
scale applications.

It is worth prefacing the remainder of this section with 
the warning that the TFM and the KTGF are unavoidably 
mathematical, and as such any description thereof which 
does not include the relevant equations is inevitably some-
what vague and ‘hand-waving’. That said, a full under-
standing of the methods themselves is not necessary to the 
purposes of the present review article. As such, for brevity 
(and so as not to be off-putting to the casual reader) we will 
provide in the main text only the ‘hand-waving’ explana-
tion, but include as supplementary material a more com-
plete, mathematical description.

Key publications introducing the theories of TFM and 
KTGF can be found in references (Anderson and Jackson, 
1967; Bishop, 1975; Ding and Gidaspow, 1990; Karlsson et 
al., 2009; Liu et al., 2017; Zhou et al., 2010) and 
(Brilliantov et al., 2004; Ding and Gidaspow, 1990; Iddir 
and Arastoopour, 2005; Jenkins and Savage, 1983; Karlsson 
et al., 2009; Lun et al., 1984; Rao et al., 2008; Savage and 
Jeffrey, 1981; Schaeffer, 1987), respectively. Although 
these theories are well-established, there are numerous 
variations in the formulations, taking into account factors 
such as elasticity (Lun et al., 1984), particle size distribu-
tion (Liu et al., 2022), and particle types (Iddir and 
Arastoopour, 2005), among others. Consequently, the de-
scriptions of TFM and KTGF are not unique.

The role of the KTGF is to formulate the stresses associ-
ated with particulate-phase flow. It is an extension of the 
classical kinetic theory of gases (Fowler, 1939) adapted for 
dense particulate flows. Initially, the kinetic theory was 
developed by Chapman and Cowling (Fowler, 1939) for 
gases to predict the behaviour of mass point molecules with 
conserved interaction energies. About three decades ago, 
this theory was extended to particulate flow, where interac-
tions between particles are not conserved. Savage and 
Jeffrey (1981) were among the first to apply the kinetic 
theory to rapidly deforming materials in the (relatively 
simple) form of smooth, hard, spherical particles. In this 
theory, the fluctuation energy of particles is described by 
introducing the concept of a ‘granular temperature’, analo-
gous to thermodynamic temperature for gases. Though 
different researchers consider different definitions of the 
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granular temperature (Goldhirsch, 2008), in the current 
context we adopt the most common (and indeed literal) 
definition as the ensemble average of the square of parti-
cles’ fluctuating velocities. Having introduced a granular 
analogue for temperature, one must also develop expres-
sions for granular pressure, bulk viscosity, shear viscosity, 
frictional shear viscosity, and diverse other terms (Lun et 
al., 1984; Johnson and Jackson, 1987; Schaeffer, 1987). 
Examples of these expressions can be found in the Supple-
mentary Material.

The granular pressure represents the particle phase nor-
mal force caused by the particle–particle interactions. Its 
description, based on the kinetic theory of granular flow, 
was developed by Jenkins and Savage (1983) and Lun et al. 
(1984). The bulk viscosity is a measure for the resistance of 
a fluid against compression. It is obvious that the impor-
tance of the bulk viscosity depends strongly on the velocity 
gradients. In a fluidised bed, the bulk viscosity and the 
shear viscosity are of the same order of magnitude, and 
hence the bulk viscosity should not be neglected, as can be 
done when simulating Newtonian fluids. While the granu-
lar pressure and bulk viscosity describe normal forces, the 
shear viscosity accounts for the tangential forces. It was 
shown by Lun et al. (1984) that it is possible to combine 
different inter-particle forces and use a momentum balance 
similar to that of a true continuous fluid. In similarity to the 
particle pressure, a particle shear viscosity can also be de-
rived from the kinetic theory.

While continuum models have been shown capable of 
simulating various particulate systems, including rotating 
drums (Schlick et al., 2015) and free-surface flows 
(Chassagne et al., 2020), the majority of industry-relevant 
studies have concerned two-phase flows, and in particular 
fluidised beds—including circulating fluidised beds (Liu et 
al., 2021), tapered fluidised beds (Khodabandehlou et al., 
2018; Liu H. et al., 2017; Liu X. et al., 2019), spray coaters 
(Shuyan et al., 2010; Srčič et al., 2013), spouted beds 
(Gryczka et al., 2009; Moliner et al., 2019) and bubbling 
beds (Lungu et al., 2021; Nikolopoulos et al., 2017; 
Ostermeier et al., 2019a; Xi et al., 2021), as well as being 
used to study jet behaviour (Chen and Wang, 2014).

A number of recent studies have also focused specifi-
cally on the comparison of CFD–DEM and TFM models 
(Chen and Wang, 2014; Moliner et al., 2019; Lungu et al., 
2021; Ostermeier et al., 2019a). While in general—as one 
may expect—CFD–DEM models are generally found to 
provide stronger agreement with experimental baseline 
data than TFM, TFM models are found in many (though 
not all) cases to provide reasonable agreement with experi-
ment. Perhaps surprisingly, some specific aspects of system 
behaviour are, in some cases, better captured by TFM than 
CFD–DEM (Chen and Wang, 2014; Lungu et al., 2021), 
though overall agreement in the cited cases remains stron-
ger for CFD–DEM.

3.1 Pros and cons
TFM is typically—though (dependent on system size 

and other factors) not always (Moliner et al., 2019)—the 
most computationally efficient of all the methods discussed 
thus far. However, as is evident from the preceding section, 
TFM simulations are typically less accurate than equiva-
lent CFD–DEM simulations, though in many cases can still 
provide reasonable agreement with experimental data. As 
is also evident from the above, the models require a signifi-
cantly larger number of modelling assumptions than either 
fully resolved or coarse-grained DEM simulations, and the 
existence of many competing theories makes the choice of 
the correct model somewhat challenging.

4. Validation of models via industrial-scale 
imaging

As touched upon above, one of the most significant (and 
often-overlooked) problems with the application of numer-
ical models of particulate systems is the lack of rigorous 
calibration and validation (Windows-Yule et al., 2016). 
While the matter of calibration has been addressed in detail 
in recent reviews (Ketterhagen and Wassgren, 2022; 
Windows-Yule and Neveu, 2022), the matter of valida-
tion—and in particular the validation of simulations con-
cerning industrial-scale systems—has received less 
attention.

The most rigorous validation of particulate systems is 
typically performed through comparison with experimental 
imaging data. At the laboratory scale, simulation models 
can be rigorously and (relatively) easily validated through 
comparison with comparatively cheap and readily avail-
able, optical methods such as particle imaging velocimetry 
(PIV) and particle tracking velocimetry (PTV) (Marigo and 
Stitt, 2015; Shirsath et al., 2015; Weber et al., 2019; 2021), 
see e.g. Fig. 6. At the industrial scale, however, this be-
comes still more challenging due to the fact that in most 
cases industrial systems are a) large and b) optically 
opaque.

The issue of opacity can be overcome by a variety of 
techniques, including X-ray tomography (CT) (Wang et al., 
2004; 2007), radioactive particle tracking (RPT) (Roy, 
2017), positron emission particle tracking (PEPT) 
(Windows-Yule et al., 2020), magnetic resonance imaging 
(MRI) (Gladden and Alexander, 1996), electrical capaci-
tance, impedance or resistivity tomography (ECT/EIT/
ERT5) (Wang, 2015), or magnetic particle tracking (MPT) 
(Neuwirth et al., 2013). An introductory summary of each 
of these techniques can be found in Chapter 4 of 
(Windows-Yule et al., 2022b). However, of these imaging 
techniques, many are still not suitable for industrial  
imaging. The small bore size of MRI systems, for example, 
5 For the sake of this article, where the focus is not a deep analysis of the 
techniques discussed, we will refer to this group of techniques simply as 
‘EXT’.
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combined with the fact that most industrial systems are 
metal-clad, makes this technique largely unsuitable (Elkins 
and Alley, 2007).

The requirement of MPT for strongly magnetic tracer 
particles (Buist et al., 2014) again means that it cannot be 
realistically used in systems containing (or constructed 
from) ferrous or other magnetic materials, thus again limit-
ing its industrial value. Even in nonmagnetic systems, the 
tracers used for imaging are typically of millimetre size, 
making them unsuitable for representing a wide variety of 
industry-relevant particles, which (in the chemical and 
pharmaceutical sectors in particular) tend to be closer to the 
micron scale.

X-ray CT is widely used in industrial applications (De 
Chiffre et al., 2014) and, as commercially available sys-
tems become able to use higher-energy X-rays (Sun et al., 
2022), it can be used to image increasingly thick, dense 
targets. However, its primary use in industry is for metrol-
ogy, and the imaging of individual parts (Sun et al., 2012), 
as opposed to imaging the dynamics of active industrial 
systems—though that is not to say that it has not found 
certain valuable applications, for example studying fluid 
flow in porous media (Bultreys et al., 2016), or studying 
morphological changes in batteries (Finegan et al., 2016). 
However, despite significant recent improvements in the 
acquisition rate of X-ray CT systems (Withers et al., 2021), 
and in particular the very impressive capabilities of syn-

chrotron systems (Dewanckele et al., 2020) and lab-scale 
systems (Maire and Withers, 2014), the temporal resolution 
offered by current, commercially-available industrial scan-
ners still remains too low to meaningfully capture the rapid 
flows exhibited by many industrial particle-handling sys-
tems (Zwanenburg et al., 2021). The requirement for X-ray 
CT systems to be entirely shielded also means that their use 
for the in situ imaging of real industrial processes remains 
challenging.

Following from the above, we are left with three tech-
niques which can realistically be applied to the in situ im-
aging of a reasonably wide range of industrial particle 
handling systems: EXT, RPT, and PEPT. All three tech-
niques carry the advantages of being able to penetrate 
metal-walled systems, image comparatively large systems, 
and having suitably high temporal resolution to capture the 
dynamics of rapid granular flows. All three techniques can 
also be applied using a modular array of detector devices 
(Wang, 2015), allowing the imaging of large systems with 
complex geometries. Each technique, however, also carries 
its own distinct strengths and weaknesses. In the following 
paragraphs, we will briefly summarise these strengths and 
weaknesses in the specific context of industrial imaging 
and the validation of numerical models, provide an  
overview of the types of systems which can (and cannot) be 
successfully imaged, and highlight recent developments in 
the relevant fields.

Fig. 6  An example of the use of optical data for the validation of DEM simulations for a laboratory-scale rotating drum. Image reproduced from Ref. 
(Marigo and Stitt, 2015) under the terms of the CC-BY 4.0 license. Copyright: (2015) The Authors, published by Hosokawa Powder Technology Foun-
dation.
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4.1 Electrical tomography
EXT techniques operate, in simple terms, by transmit-

ting an electrical signal through a given system of interest, 
which is then received by an array of detectors (electrodes) 
placed strategically around the system. By analysing the 
intensity of the signals received by each part of the sensor 
array, various system properties can be back-computed 
(Scott and McCann, 2005). A previous KONA review pa-
per providing an more detailed yet still accessible introduc-
tion to electrical tomography techniques can be found in 
reference (Rasteiro et al., 2011). EXT is already widely 
used for the imaging of a wide range of industrial systems 
and unit operations, including pipes (Dong et al., 2003), 
storage vessels (Kowalski et al., 2010), mixers (Holden et 
al., 1998), reactors (Bolton and Primrose, 2005), cyclones 
(Meng et al., 2008). Indeed, EXT methods can realistically 
be applied to almost any system physically resembling a 
pipe or tank (Rasteiro et al., 2011; Sharifi and Young, 
2013).

Key metrics which can potentially be used to validate 
numerical simulations include the flow rates and velocity 
distributions, the distributions of different materials and 
(thus) various mixing and mixing rate metrics, solids con-
centration, and solids hold-up (Sharifi and Young, 2013). 
Fig. 7 shows an example in which ECT-derived cross- 
sectional images of solid distributions are used to validate 
CFD–DEM simulations of a Wurster coater (Che et al., 
2020). This set of images, as well as those shown in Fig. 8, 
clearly illustrate the advantage gained in terms of the thor-
oughness and rigour when using two/three-dimensional 
imaging techniques (as opposed to simpler, lower- 
dimensional data such as pressure drop measurements) 
when validating simulations.

In terms of the relative advantages and disadvantages of 
the ECT technique, two particularly significant benefits for 

industrial applications are the low cost and easy installation 
of the technique (Eda et al., 2013). Compared to nuclear 
imaging techniques such as PEPT and RPT (which we dis-
cuss next), it also carries the advantage of not using ionis-
ing radiation, thus providing non-trivial benefits in terms of 
ease of use, as no permits etc. are required for its imple-
mentation. Electrical tomography systems can also be used 
as on-line, in-line sensors, offering access to real-time data 
from a system.

In terms of drawbacks, EXT techniques offer compara-
tively poor spatial resolution—typically of the order of 
10 % of the diameter of the vessel being imaged when used 
in practice in industrial systems (Xie et al., 1995). While of 
course these figures fall well below what is hypothetically 
achievable with more carefully controlled conditions and 
cutting-edge algorithms, it is nonetheless well accepted 
that spatial resolution remains an Achilles heel of EXT 
techniques (Rymarczyk et al., 2019; York, 2001). Another 
disadvantage of electrical tomography compared to meth-
ods such as RPT and PEPT is that it provides only Eulerian 
information—that is, it can provide information regarding 
the bulk motion of a particulate medium (velocity distribu-
tions, solids distributions...), but provides no particle-level 
information (e.g. circulation time, dispersion rate, etc.).

4.2 Positron emission particle tracking
Positron emission particle tracking, as its name implies, 

tracks the motion of a ‘tracer particle’6 which is ‘labelled’ 
with a positron-emitting radioisotope.

When the positrons produced by said isotope annihilate 
with electrons within the tracer particle, they produce a pair 

Fig. 7  Example of the use of ECT data in the validation of a CFD–DEM model of a Wurster coater. Reproduced with permission from Ref. (Che et 
al., 2020). Copyright: (2020) Elsevier B.V.

6 PEPT may also be conducted using multiple such tracers (Nicuşan and 
Windows-Yule, 2020; Yang et al., 2006), but for the sake of simplicity in 
the present explanation of the technique we will only consider the case of 
a single tracer.
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of 511 keV gamma photons whose trajectories are collinear 
and antiparallel, thus effectively ‘drawing a straight line’ 
(known as a line of response or LoR) through the tracer’s 
position. If multiple such LoRs are detected by suitably- 
placed detectors surrounding a given system of interest, 
they can be used to triangulate the position of the tracer. For 
current detector systems and algorithms, tracers can be lo-
cated with micron-scale spatial resolution and microsecond- 
scale temporal resolution (Windows-Yule et al., 2022b). 
Through suitable temporal averaging, the dynamics of the 
tracked particle(s) may be used to build up a picture of the 
full, three-dimensional dynamics of the system of interest. 
PEPT’s use of high-energy gamma radiation means that it 
can be used to probe the interior dynamics of large, dense, 
optically-opaque, three-dimensional systems, making it 
well-suited to industrial imaging. The tracers used are also 
typically physically identical to those belonging to the 
system of interest, meaning that the technique is also 
non-invasive. A more complete but still accessible intro-
duction to the PEPT technique can be found in reference 
(Windows-Yule et al., 2020), and a deeper dive into the al-

gorithms used to track particles in reference (Windows-Yule 
et al., 2022a).

Like ECT, PEPT has been applied to the study of a wide 
range of industry-relevant processes and unit operations, 
including pipe flow (Fairhurst et al., 2001), diverse types of 
mixers (Jones and Bridgwater, 1998; Marigo et al., 2013; 
Mihailova et al., 2015), stirred tank reactors (Fangary et al., 
2000), fluidized beds (Leadbeater et al., 2023), spouted 
beds (Al-Shemmeri et al., 2021), and vibrated beds 
(Windows-Yule et al., 2014), cyclones (Chan et al., 2009), 
drum roasters (Al-Shemmeri et al., 2023), mills 
(Conway-Baker et al., 2002), froth flotation devices (Cole 
et al., 2022), extruders (Diemer et al., 2011), and even 
household appliances such as washing machines, dish-
washers and tumble dryers (Jones et al., 2022; Pérez- 
Mohedano et al., 2015).

Due to the rich, high-resolution, three-dimensional data 
provided by PEPT, the technique is also widely used in the 
validation of numerical models of particulate and particle- 
fluid systems, including industry-relevant systems. Fig. 8 
shows a comparison of PEPT and CFD–DEM data for a 

Fig. 8  Comparison of PEPT and CFD–DEM derived solid occupancy distributions for a variety of different system conditions (rows) and drag mod-
els (columns). Reproduced with permission from Ref. (Che et al., 2023a).  Copyright: (2023) Elsevier B.V.
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NEUHAUS NEOTEC spouted-bed coffee roaster (Che et 
al., 2023a). By post-processing both PEPT and CFD–DEM 
data on the same Eulerian grid, it is possible to conduct a 
cell-by-cell comparison of experimental and numerical 
data for a variety of physical fields, and thus provide a  
fully quantitative assessment of the degree of accuracy ex-
hibited by a given simulation. Full details of the process 
through which this may be achieved may be found in refer-
ence (Che et al., 2023a).

To date, however, while PEPT has been used to image a 
number of ‘real’ industrial systems, including pilot-scale 
systems, in the laboratory (Windows-Yule et al., 2022b), its 
use for the in situ imaging on active industrial sites has 
been comparatively limited as compared to techniques 
such as EXT.

In 2007, using a portable, modular detector system de-
veloped at the University of Birmingham, PEPT was suc-
cessfully used to extract information from a large (750 mm 
diameter) fluidised bed at BP’s site in Hull, operating at 
pressure and under industry-relevant conditions (Ingram et 
al., 2007). Data obtained included velocity vector fields 
indicating the flow regime of the system, and circulation 
rate data, both providing valuable insight into mass trans-
port within the system and the variation thereof with 
changes to key system parameters.

In 2022, an upgraded modular camera system (Herald et 
al., 2023; Parker et al., 2022) was used to image particle 
motion within an active fluidised-bed pyrolysis reactor 
used for the chemical recycling of waste plastics (Ingenia, 
2022). In this instance, not only were particles correspond-
ing to the bed material used to image the flow dynamics of 
the system, radioactively labelled plastic pellets were also 
used to assess crucial aspects of system performance in-
cluding the residence time of the particle (i.e. the time re-
quired for its complete volatilisation), as well as indicating 
whether or not the plastics injected into the system were 
subject to adequate mass transport to ensure temperature 
uniformity (and thus product quality).

The lack (to date) of PEPT’s wider use in on-site imag-
ing can likely be ascribed to one (or both) of two major 
factors: firstly, the current lack of widespread availability 
of the relevant expertise or equipment (there presently only 
exists one portable, modular PEPT camera). Secondly, the 
fact of the use of ionising radiation means there exists a 
considerable amount of ‘red tape’ as compared to tech-
niques such as ECT. However, there do not exist any spe-
cific technological barriers to the wider adoption of 
industrial PEPT.

The above represents perhaps the most significant ‘con’ 
regarding the industrial application of PEPT imaging. An-
other notable drawback, however, is that while PEPT can 
provide real-time information regarding the motion of indi-
vidual particles, the requirement of the time-averaging of 
multiple tracer passes to produce full, Eulerian data means 

that, unlike EXT, PEPT cannot provide direct information 
regarding transient bulk phenomena (e.g. bubble dynamics 
in fluidised beds)—though some indirect and/or statistical 
information regarding such processes can still be obtained 
(Windows-Yule et al., 2022b).

In terms of PEPT’s advantages, as noted above, it facili-
tates the extraction of both Lagrangian and Eulerian data, 
providing a depth of information that can be extremely 
valuable for the rigorous calibration and validation of nu-
merical models, as forms the focus of this section. It also 
offers the highest spatial resolution of all techniques dis-
cussed which can be crucial, for example, when investigat-
ing the mixing of micron-scale particles in the 
pharmaceutical industry.

4.3 Radioactive particle tracking
The fundamental approach of radioactive particle track-

ing (RPT)7 is not dissimilar to that of PEPT, in that a single8 
radioactively-labelled tracer particle is followed through a 
given system of interest, and the time-averaged dynamics 
thereof are used to provide three-dimensional Eulerian in-
formation. Unlike PEPT, however, RPT does not require 
the use of positron-emitting tracers (though such tracers 
can be used for RPT if desired), but can feasibly be applied 
using any gamma-emitting radioisotope. Rather than find-
ing the intersection of multiple LoRs produced by back-to-
back gamma rays, in RPT the location of the tracer is 
determined by measuring the relative intensity of the radia-
tion emitted by the tracer across a series of detectors placed 
around the system. In an entirely homogeneous system, the 
intensity received by a given detector will be proportional 
to the square of its distance from the tracer. As such, with 
multiple such detectors placed strategically around the 
system of interest, one could hypothetically determine the 
position of the tracer through triangulation. In reality, how-
ever, since the vast majority of particulate systems are het-
erogeneous to some degree, correction factors must be 
applied to account for the differing degrees of attenuation 
experienced by gamma rays taking different paths through 
the system. For this reason, unlike PEPT, RPT must be 
specifically calibrated for each new system and set of mate-
rials to which it is applied (Roy et al., 2002). The fact that 
local densities (and thus their ability to attenuate gamma 
rays) may, in many systems, undergo non-negligible fluctu-
ations means that RPT measurements are typically subject 
to a larger degree of uncertainty than PEPT measurements, 
and thus correspondingly offer lower temporal resolution.

Like PEPT, RPT has been applied to a diverse range of 

7 RPT is also commonly referred to as computer aided radioactive particle 
tracking (CARPT). The two terms can, at least in the context of the present 
work, be used interchangeably.
8 As with PEPT, RPT may also be conducted using multiple such tracers 
(Rasouli et al., 2015), but for the sake of simplicity in the present explana-
tion of the technique we will only consider the case of a single tracer.
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industry-relevant systems and applications including flui-
dised beds (Fraguío et al., 2007), packed beds (Chen et al., 
2001), stirred tanks (Rammohan et al., 2001), bubble col-
umns (Devanathan et al., 1990), and rotating drums 
(Rasouli et al., 2016). The advantages and disadvantages of 
RPT compared to ECT are also largely similar to those of 
PEPT, and as such will not be repeated here. Of greater in-
terest in the current section are RPT’s strengths and weak-
nesses compared to PEPT. One of the most notable 
differences between PEPT and RPT—as indeed has been 
explicitly noted by one of the most prominent practitioners 
of the RPT technique (Roy et al., 2002)—PEPT can in 
many ways be considered an ‘off-the-shelf’ or ‘plug-and-
play’ technique, whereas for RPT “a laborious trial and 
error experimental procedure has to be undergone before a 
good experimental run can be implemented” (Roy et al., 
2002). As alluded to above, the assumptions required for 
the calibration of RPT systems also mean that the spatial 
resolution achievable with this technique is typically lower 
than that achievable with PEPT—though sub-millimetre 
accuracy is still possible to achieve under suitable condi-
tions.

In the context of industrial imaging, however, RPT does 
offer one significant advantage: PEPT’s requirement for the 
use of back-to-back gamma rays produced by positron- 
electron annihilation events inherently fixes the energy of 
usable gamma rays at 511 keV. As RPT is free of such re-
strictions, radioisotopes producing higher energy gamma 
rays may be used, thus—due to their increased characteris-
tic penetration lengths—allowing the imaging of larger 
systems.

4.4 Summary
Table 1 provides a brief summary of the relative 

strengths and weaknesses of the techniques discussed in the 
previous sections. Though perhaps the weakest of the three 
in terms of its actual imaging capabilities, considering the 
reduced red tape, lower costs, and fewer health and safety 

concerns associated with electrical tomography techniques, 
it is perhaps unsurprising that, in the general context of 
commercial, industrial imaging, it remains by far the most 
popular technique. However, in the specific context of the 
calibration and validation of numerical models, it can be 
argued that the depth of data which can be extracted from 
PEPT and RPT (and the precision of said data) makes them 
more suitable choices: the calibration and validation of 
simulation models can (and, in the authors’ view, should) 
be seen as a numerical optimisation problem, with a num-
ber of free parameters equal to the number of tunable vari-
ables in the simulation (Windows-Yule and Neveu, 2022). 
Even a simple, single-phase, one material simulation has in 
excess of 10 such free parameters, and a simulation involv-
ing a fluid phase and/or multiple distinct materials many 
more still. If we wish to provide closures for each of these 
parameters, then a greater range of data (as is available 
from the aforementioned particle tracking methods) is re-
quired.

In the ‘factory of the future’, then, one might imagine 
that there exists an important role for both electrical tomog-
raphy and particle tracking methods, the latter being used 
more occasionally for the development of new models (i.e. 
digital twins of process equipment), and the former for 
regular, day-to-day process monitoring, and informing the 
models created.

5. Summary and conclusion
In this review, we have provided an overview of several 

leading techniques for the numerical modelling of industrial- 
scale particulate and particle-fluid systems, as well as the 
experimental imaging techniques which may be used for 
the validation thereof. In both cases, it is evident that, with 
currently available technologies, there does not exist ‘one 
technique to rule them all’; rather, different techniques are 
more suitable for different systems and situations, with 
clear tradeoffs to be considered. In terms of simulation 
models, the trade-off is typically between accuracy, ease of 
calibration/implementation, and computational cost. In 
terms of experimental imaging, the tradeoff is typically 
between accuracy, ease of calibration/implementation, and 
financial cost.

In keeping with the title of the review, it is perhaps of 
value to end by providing a brief summary of the main 
challenges associated with the methods discussed, and the 
potential solutions thereto. The main challenges can be 
broadly distilled down as follows:
(i)	 The use of fully resolved DEM can provide quantita-

tively accurate numerical models of experimental 
systems, created with relatively few simplifying as-
sumptions, but even with state-of-the-art hardware 
and parallelisation techniques, is currently limited  
to the simulation of billions of particles, whereas in-
dustrial systems may contain trillions or even  

Table 1  Summary of the comparative strengths and weaknesses of 
electrical tomography (EXT), positron emission particle tracking (PEPT) 
and radioactive particle tracking (RPT) techniques.

EXT PEPT RPT

Spatial resolution   

Capable of imaging large systems   

Cost   

Eulerian information   

Lagrangian information   

Transient information   

Plug-and-play   

Non-ionising radiation   
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quadrillions.
(ii)	 Coarse-grained DEM models can seemingly facilitate 

the meaningful simulation of systems containing arbi-
trarily large numbers of particles, but there is at pres-
ent no consensus on the mapping of individual particle 
properties to meso-particle properties.

(iii)	 Mapping-based extrapolation methods also allow fur-
ther acceleration of DEM simulations, but unlike CG 
methods remain fully resolved, thus allowing direct 
calibration; however, these methods are unsuitable for 
transient processes, and may not be viable for dilute 
systems.

(iv)	 Simulations based on the kinetic theory of granular 
flow are potentially (though not necessarily) capable 
of increasing simulation speed further still, but intro-
duce still more extreme simplifying assumptions than 
CG, most notably by treating discrete systems as 
continuous.

(v)	 Experimental methods such as electrical tomography, 
radioactive particle tracking and positron emission 
particle tracking are capable of imaging industrial- 
scale systems, and thus providing validation data for 
numerical simulations, yet those techniques which 
offer greatest accuracy often involve the highest finan-
cial costs and most red tape, and vice versa.

In terms of a solution, the most effective route—and one 
increasingly being adopted by researchers—is not to use 
any one method in isolation, but to take a ‘multi-scale’ or 
‘bootstrapping’ approach involving several (if not all) of 
the above-described methodologies. For example, one may 
begin by considering the largest (e.g. pilot scale) model of 
the system of interest that can both a) be simulated using 
fully resolved (CFD-)DEM, and b) be imaged with a de-
sired imaging method (the ultimate size of the system being 
determined by whichever of a) and b) is the limiting fac-
tor). Once fully calibrated and validated against suitable 
experimental data, this resolved model may be used either 
to develop suitable closure relations for a KTGF/TFM 
model, or to determine suitable coarse-grained DEM prop-
erties. Since the models developed should be dependent 
only on the materials involved, one may reasonably ex-
pect—if they have been suitably rigorously calibrated—
that they may then be used to efficiently model larger-scale 
systems9. Though convoluted, this process—as evidenced 
by the literature discussed in the preceding sections— 
provides a viable route to the accurate simulation of  
industrial-scale systems.

Supplementary Information
The online version contains supplementary material 

available at https://doi.org/10.14356/kona.2025007.
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