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Current Progress of Experimental and Simulation Work of 
Mixing Processes in Particulate Systems †

Xin Jin and Yansong Shen *
School of Chemical Engineering, University of New South Wales, Australia

Particle mixing is a fundamental process used in various industries to handle powders, 
granules, and pellets. Understanding particle mixing is critical for optimizing industrial 
processes involving particulate systems, making it an important scientific and practical 
consideration. In this review, the current research progress of experimental and simulation 
works for widely used tumbler and convective mixers is reviewed, and research gaps are 
summarized for future investigations. Finally, some new development points of modern 
particle mixing technologies and topics are mentioned. This paper provides a comprehensive 
review of the research work of mixers in particulate systems and sheds light on future 
research in the field of particle mixing.
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1. Introduction
Granular materials, powders, and bulk solids are ubiqui-

tous in nature, including soil, sand, and grains as well as in 
various process industries, such as detergent, paint, plas-
tics, chemical, mineral processing, metallurgical, pharma-
ceutical, biotechnology, and chemical industries (Duran, 
2012; Forterre and Pouliquen, 2008). According to relevant 
statistical data, about half of industrial products and 
three-quarters of the raw materials exist in the chemical 
industry and are treated in the form of particle state (Lee 
and Henthorn 2012; Rhodes, 2008). Currently, the funda-
mental theory of motion equations of individual particles 
and the force analysis of their interaction with other parti-
cles are not enough to describe the bulk particles’ behavior 
in a practical industrial process because a large number of 
particles makes it difficult to predict their complex interac-
tions accurately. Meanwhile, particles naturally own differ-
ent physical properties (such as size, density and shape) 
(Ghadiri et al., 2020), and the segregation phenomenon is 
frequently encountered while the bulk particles are treated 
during the industries, further hindering the deep under-
standing of the granular system. Unfortunately, due to the 
opaque nature of granular materials, there are few reliable 
measuring methods available to date. Furthermore, in prac-
tical industrial applications, granular systems are often in-
completely fluidised, resulting in a complex system 
comprising multiple coexisting granular flow states. This 

complexity poses challenges to researchers studying gran-
ular systems. Therefore, the fundamental study of the 
granular system is still a great challenge for both industry 
and academia at the current stage.

For powder, granular, or pellet products in different in-
dustrial processes, particle mixing is an essential unit oper-
ation, such as the drying and storage of grains, the 
processing and packaging of pharmaceuticals, and the 
mining and processing of coal, etc. (Bridgwater, 2012; 
Ottino and Khakhar, 2000). Most of these industrial pro-
cesses require a well-mixed degree of mixture for the final 
or middle products to confirm consistent product quality 
and high production efficiency. The development of effec-
tive techniques and technologies for controlling particle 
mixing and separation is of great importance, as it can lead 
to energy and cost savings in processing, as well as ad-
vancements in the field of particle mechanics. Achieving 
rapid and homogeneous mixing is a crucial objective. 
Therefore, it is of great significance to reveal the underly-
ing fundamentals and promote the operating performance 
of particle mixing processes for modern industries.

In this review, the current research progress of experi-
mental and simulation works for widely used tumbler and 
convective mixers is reviewed, and research gaps are sum-
marized for future investigations. Finally, some new devel-
opment points of modern particle mixing technologies and 
topics are mentioned (Jin, 2022).

2. Research progress summary of
experimental work

Over the past few decades, numerous experiments have 
been conducted to examine the mixing behavior of various 
mixers. This section will present a concise summary of 
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relevant experimental studies organised and reviewed 
based on the categorisation of mixers.

2.1 Experimental work of tumbler mixers
Rotating drums, as versatile equipment, are extensively 

employed in various industries, such as rotary kilns, dryers, 
mixers, reactors, and granulators for processing granular 
materials. The rotating drum is a widely used apparatus in 
laboratory studies of solid mixing phenomena due to its 
simplicity in geometry and ease of operation control com-
pared to other mixing equipment. Moreover, the rotating 
drum can be designed to be transparent, closed, and rela-
tively thin, making it suitable for observing particle motion 
and studying fundamental phenomena of solid mixing. For 
example, to investigate the movement of particles in a 
three-dimensional rotating drum at low to medium rota-
tional speeds, Ding et al. (2001) employed a combination 
of experimental and theoretical methods. The researchers 
employed the non-invasive positron emission particle 
tracking (PEPT) technique to monitor the trajectories and 
velocities of particles. Additionally, they developed a math-
ematical model utilizing the thin-layer approximation to 
characterise the motion of solids within the active layer. 
The experimental results were compared with the model, 
and good agreement was found between the two. Santomaso 
et al. (2004) conducted a study on the mixing of non-ideal 
powders, specifically granular tetraacetylethylenediamine 
(TAED), in rotating batch cylinders that were operating in 
the rolling regime. They characterised and quantified the 
local mixture composition by utilizing a solidification tech-
nique in combination with computerised image analysis. 
Observations showed the formation of a temporarily poorly 
mixed core at low rotation speeds, and the role of convec-
tion in the mixing mechanism of non-ideal granular mate-

rial was identified through the identification of convective 
fluxes resulting from the friction between the powder and 
end plates of the mixer. Zhang et al. (2018) conducted a 
study utilizing the Magnetic Particle Tracking (MPT) 
method to examine the particle motion in flighted rotating 
drums. This was the first investigation of its kind to utilise 
MPT. The study focused on the behavior of plastic balls 
and soybeans in a rotating drum with a 5 % filling degree at 
various drum rotating speeds ranging from 10 to 40 rpm. 
The study analysed the particle motion in a rotating drum 
by examining particle trajectories, distributions of transla-
tional and rotational velocity, falling time of the dilute 
phase, and instantaneous velocity of the dilute phase in the 
equatorial region. The analysis showed that the rotating 
speed of the drum had a significant impact on the particle 
motion, with only minor effects from particle size and 
shape within the studied range. The schematic of the exper-
imental setup and the critical results can be seen in Fig. 1. 
Li R. et al. (2021) conducted experiments to investigate the 
velocity distribution of rice particles in a rotating drum. As 
illustrated in Fig. 2, the results revealed that the flow of rice 
particles often displayed multiple velocity peaks. At low 
rotation speeds of 1–3 rpm, the particle flow within the ro-
tating drum transforms into an avalanche mode. This is due 
to the slope of the accumulation surface exceeding the an-
gle of repose, causing particles to slide and cover the entire 
particle bed. As a widely used apparatus in solid mixing 
studies, rotating drum experiments have yielded important 
insights in the past three years, as summarized in Table 1.

In contrast to the rotating drum, there exists a relatively 
limited amount of experimental work on other types of 
tumbler mixers. The following section provides a review of 
some important experimental studies.

Brone and Muzzio (2000) performed a comparison of 

Fig. 1 Schematic of the experimental setup and critical experimental results, reprinted with permission from Ref. (Zhang et al., 2018). Copyright: 
(2018) Elsevier B.V.
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the mixing performance between a conventional double- 
cone blender and a modified version incorporating a sta-
tionary deflector plate. The latter was designed to enhance 
axial particle flow and was found to be highly effective in 
achieving improved mixing outcomes. The results showed 
that the incline of the deflector plate relative to the mixer 
plane resulted in the creation of a convective axial flow 
across the centre of the blender, leading to an increase in 
the mixing rate by a factor of 25. The images demonstrat-
ing the plate effect on mixing within the double cone can be 
found in Fig. 3. Volpato et al. (2018) examined the effects 
of the unloading process on mixture quality in three distinct 
types of tumbling mixers, namely symmetrical double 
cones, asymmetrical double cones, and conic mixers. The 
experiments utilised tetraacetylethylenediamine (TAED) 
powder that was available in different size ranges and dif-
ferentiated by colour, either white or blue. The results 
showed that tumblers capable of unloading the material in 
the mass flow regime performed better than those operating 
in funnel flow. Specifically, the best mixing performance 
was obtained using an asymmetrical double-cone mixer. 
An intrusive investigation of mixing characteristics in a 
double-cone mixer utilizing discrete pocket samplers was 
conducted by Cho et al. (2012). Millimetre-sized glass 
beads were used in the study. The results indicated that ax-
ial mixing was improved by 70–90 % with the implementa-
tion of dual-axis rotation, compared to single-axis rotation. 
It was observed that particles of smaller size (art sand) ex-
hibited faster mixing compared to larger particles (glass 
beads) due to the presence of mild cohesive effects. Fig. 4 
provides visual representations, obtained through experi-
ments, of the mixing characteristics of glass beads of 
varying sizes during single-axis and dual-axis rotations.

Alexander et al. (2004) conducted experimental studies 
to examine the stable segregation patterns in V-blenders 

under varying vessel capacities, fill levels, and rotation 
speeds. The findings indicated that the magnitudes of parti-
cle velocities determined the pattern formation. However, 
the relationship between the formation of segregation pat-
terns and the fill level of the blender could not be estab-
lished due to the intricate flow patterns in the V-blender. 
The photographs related to this study are depicted in Fig. 5. 
Kuo et al. (2005) utilised the PEPT technique to investigate 
the movement of 3 mm glass beads within a V-mixer. The 
results of their experimentation exhibited a linear correla-
tion between the axial dispersion coefficient of the particles 
and the rotational speed of the V-mixer, with an increase 
observed in the coefficient from 15 rpm to 60 rpm. Crouter 
and Briens (2015) conducted a study exploring the feasibil-
ity of utilizing passive acoustic emission monitoring as a 
tool for monitoring the mixing process in a V-blender. The 
acoustic emissions acquired during the tumbling of the 
V-shell were subjected to a wavelet filter to remove the as-
sociated vibrational noise. This enabled a concentration of 
information pertaining to particle movement and interac-
tions within the V-shell. The study conducted by Crouter 
and Briens demonstrates that passive acoustic emissions 
can be employed as a monitoring method to gain insight 
into the movement and interactions of particles in a 
V-blender. By analysing the measured vibrations, valuable 
information about particle behavior can be obtained. As 
such, the study highlights the potential of this approach for 
monitoring V-blender operations.

2.2 Experimental work of convective mixers
In contrast to tumbler mixers, convective mixers incor-

porate rotating components to increase the mixing rate and 
improve mixing performance (Rahmanian N. et al., 2008). 
Some typical types of ribbon mixer can be found in our 
previous work, as shown in Fig. 6. MArczuk et al. (2017) 
conducted experimental studies on a horizontal ribbon 
mixer in a livestock farming mechanization laboratory, 
employing a personal computer, measurement and control 
devices, and instruments in accordance with GOST 15.101-
98. The results indicated that the mixing time significantly 
affected the amount of mixing components, the uniformity 
coefficient of the mix, the capacity, and the specific energy 
consumption. Yeow et al. (2011) conducted an experimen-
tal investigation to examine the effects of various operating 
parameters and feed preparation characteristics on the ho-
mogeneity of mixing in a batch ribbon mixer. Lactose 
100 M, Lactose 200 M, Ascorbic Acid, and Zinc Oxide 
powders were utilised as the testing materials for the study. 
The physical geometry of the batch ribbon mixer is de-
picted in Fig. 6. The findings indicated that improved 
mixing homogeneity could be achieved by increasing the 
rotational speed and duration of mixing, as well as through 
pre-blending and using smaller feed particle sizes, which 
enabled the attainment of the desired homogeneity in a 

Fig. 2 System and particle setup: (a) the measuring system includes a 
LED light source and a CCD camera; (b) the drum is half filled with 
three types of particles, respectively: spherical particles, Rice particles 
A with AR = 2 and Rice particles B with AR = 3, reprinted with permis-
sion from Ref. (Li R. et al., 2021). Copyright: (2021) Elsevier B.V.
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shorter period at a lower rotational speed. Muzzio et al. 
(2008) conducted a study to evaluate the impact of process-
ing and equipment parameters in a ribbon blender on the 
homogeneity of magnesium stearate. The study was carried 
out by analysing the properties of the blender using a core 
sampling technique, which involved collecting at least one 
hundred samples from throughout the blender and charac-
terizing the entire bed. The investigation took into account 
several parameters, such as the loading technique for the 
lubricant, fill level, blade design, and blade speed, to eval-
uate their influence on the homogeneity of mixing in a 
batch ribbon mixer. The outcomes of this research can 
serve as a valuable reference for devising suitable blending 
processes and characterisation protocols for ribbon blend-

ers, as presented in Fig. 7. Gijón-Arreortúa and Tecante 
(2015) conducted a study to evaluate the impact of helical 
double-ribbon impeller parameters on the mixing time and 
power consumption during the blending of normal corn 
starch and icing sugar. Results indicated that the optimal 
mixing performance was achieved with an impeller speed 
of 75 rpm and a load ratio of 0.33, resulting in the lowest 
mixing time and the highest coefficient of mixing rate.

By summering the previous experimental studies of rib-
bon mixers, it can be observed that the mixing behavior of 
ribbon mixers is influenced by various parameters, includ-
ing the design and geometry of the mixer, rotational speed, 
fill level, feed preparation characteristics, and loading 
methods. The results of these studies suggest that an  

Fig. 3 Demonstration of the effect of the plate on mixing within the double cone. All experiments correspond to a filling level of 50 %. The standard 
double cone shown at (a) the initial condition, (b) after one min and (c) after 10 min (160 revolutions). The enhanced double cone shown at (d) the 
initial condition, (e) after 1 min and (f) after 10 min (160 revolutions), reprinted with permission from Ref. (Brone and Muzzio, 2000). Copyright: 
(2000) Elsevier B.V.

Fig. 4 Snapshots from the experiment with glass beads of different sizes for single and dual axes rotations. (a) 1 mm glass beads: corresponds to X 
rotational speed = 10 rpm; no rotation about the Y axis (i.e. 0 rpm); (b) 1 mm glass beads: corresponds to X rotational speed = 10  rpm; the Y rotational 
speed = 10 rpm; (c) 3 mm glass beads: corresponds to X rotational speed = 10 rpm; no rotation about the Y axis (i.e. 0 rpm); and (d) 3 mm glass beads: 
corresponds to X rotational speed = 10 rpm; the Y axis rotational speed = 30 rpm. Dual rotation enhances mixing. Reprinted with permission from Ref. 
(Cho et al., 2012). Copyright: (2012) Elsevier B.V.
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optimal combination of these parameters can result in effi-
cient mixing and homogenisation of the material. More-
over, various sampling and characterisation techniques, 
such as core sampling and PEPT, have allowed for a more  
comprehensive understanding of the mixing behavior in 

ribbon mixers. Despite the advancements in the under-
standing of mixing in ribbon mixers, there is still a need for 
further research to fully comprehend the mixing mecha-
nisms in these mixers and optimise their design for specific 
industrial applications. This is especially important for the 
pharmaceutical and food industries, where strict standards 
are in place for homogeneity, particle size distribution and 
product quality. Furthermore, the limited number of studies 
conducted in this area highlights the need for future re-
search to bridge the gap and provide a more comprehensive 
understanding of the fundamental aspects of ribbon mixer 
design, performance, and optimization.

The paddle mixer is a significant type of convective 
mixer that finds widespread application in industrial opera-
tions. Ebrahimi et al. (2018) conducted an experimental 
study to investigate the influence of impeller design on the 
mixing efficiency of mono-disperse, free-flowing spherical 
particles in a horizontal paddle mixer. Fig. 8 displays the 
experimental setup. The study involved collecting 16 sam-
ples for each experiment, which can be utilised to verify 
simulation results. Sixteen samples were gathered during 
each experiment, which can be employed to verify the re-
sults of simulations. Shenoy et al. (2015) conducted a study 
that involved the examination of binary powder mixing in 
a 2 L prototype lab-scale paddle mixer using several types 
of food powders with varying particle sizes and poured 

Fig. 5 The three segregation patterns found in the 1 quart V-blender 
when run at 50 % of capacity. (a) At low rotation rates (<7.5 rpm), the 
‘small-out’ pattern forms; (b) intermediate speeds (7.9–19 rpm) produce 
‘stripes’; and (c) high rotation rates (>19.3 rpm) induce ‘left–right’ seg-
regation, reprinted with permission from Ref. (Alexander et al., 2004). 
Copyright: (2004) Elsevier B.V.

Fig. 6 The geometry of ribbon impellers: (a) 2-bladed impeller spiral-
ling in the same direction (i.e., Design I); (b) 2-bladed impeller spiral-
ling in the opposite direction (i.e., Design II); (c) 4-bladed impeller (i.e., 
Design III), reprinted with permission from Ref. (Jin et al., 2022). 
Copyright: (2022) Elsevier B.V.

Fig. 7 Blender and fill level designations, reprinted with permission 
from Ref. (Muzzio et al., 2008). Copyright: (2008) Elsevier B.V.

Fig. 8 The experimental setup, reprinted with permission from Ref. 
(Ebrahimi et al., 2018). Copyright: (2018) Elsevier B.V.

Fig. 9 Image of the 2 L paddle mixer, reprinted with permission from 
Ref. (Shenoy et al., 2015). Copyright: (2015) Elsevier B.V.
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bulk densities (Fig. 9). The results of the study conducted 
by Shenoy et al. showed that a particle size ratio of up to 
4.45 resulted in a well-mixed powder mixture. However, 
for higher ratios, there was a decrease in mixture quality 
without any visual observation of segregation. The study 
found that bulk density had a greater impact on mixture 
quality compared to particle size. When the bulk density 
ratios were elevated, complete segregation was noted, and 
its manifestation was primarily attributed to the irregular 
shapes of thyme and oregano powder particles. Berntsson 
et al. (2002) proposed a technique for quantifying the 
chemical composition of powder mixtures in situ using 
near-infrared spectroscopy (NIRS) and a fibre-optic diffuse 
reflection probe. The probe was inserted into the powder in 
a Nauta mixer. The application of NIRS and a fibre-optic 
diffuse reflection probe for in-situ quantitative measure-
ment of the chemical composition of powder mixtures in a 
Nauta mixer was examined, and the results demonstrated 
its feasibility. The findings indicated that high-speed sam-
pling is an effective method for evaluating both the mean 
composition and the distribution of the mixture composi-
tion during processing. The empirical content-over-time 
trajectories were found to be consistent with a theoretical 
simulation model of blending in Nauta mixers.

Despite some progress being made, the research and 
understanding of solid mixing processes remain relatively 
limited in scope. This highlights the need for further exper-
imental studies to be conducted in this field in order to gain 
a more comprehensive understanding of the underlying 
principles and mechanisms involved in these processes. 
Most experimental studies in the field of solid mixing were 
limited to a paradigm where only a few samples were col-
lected for characterisation. Recent experimental studies 
have investigated the impact of various parameters, such as 
fill level, blade speed, and the number of blades, on the 
mixing performance of mixers. Advanced measurement 
techniques, such as non-invasive near-infrared (NIR) spec-
troscopy, tomography, and PEPT, have been utilised in 
these investigations (Cullen et al., 2017; Page et al., 2015). 
However, the experimental analysis of mixers is impeded 
by the opaqueness of the equipment and the intricacy of the 
flow within the mixer. As a result, obtaining particle-scale 
details, such as particle velocity, inter-particle contact 
force, and particle dispersion, is challenging. The absence 
of such data limits the prospects for improving mixer per-
formance. Furthermore, due to the high cost of experi-
ments, the optimal design of mixers, which necessitates 
extensive experimentation, has not been fully explored.

3. Research progress summary of simulation 
work

The progression of computer technology and parallel 
computing has facilitated the utilisation of numerical simu-
lation as a primary approach in the advancement of solid 

mixing technology. This approach can potentially reduce 
the cost of design, operating time, and technical risks and is 
increasingly being utilised to optimise mixer performance. 
Additionally, numerical simulation offers the advantage of 
observing the mixing process in a virtual environment, al-
lowing for in-depth analysis and understanding of the 
mixing mechanisms. As a result, numerical simulation has 
become an indispensable tool in the field of solid mixing 
technology, providing valuable information and insights 
that are otherwise difficult to obtain through experimental 
methods.

The current simulation approaches used in the field of 
solid mixing can be classified into two main categories: the 
two-fluid model (TFM) and the discrete element method 
(DEM). TFM is a commonly used simulation method for 
the study of mixing processes in industry-scale simula-
tions. In this approach, the gas and solid phases are treated 
as interpenetrating continua, and the computational load is 
manageable. As an Eulerian-Eulerian method, TFM em-
ploys the kinetic theory of granular flow (KTGF) to deter-
mine the solid pressure and viscosity, providing valuable 
mathematical insights into the particulate material’s micro-
scopic and macroscopic behavior (Brone et al., 1998). The 
method employs the kinetic theory of non-uniform dense 
phases to model particle-particle collisions. However, the 
model’s accuracy is constrained as it relies on simplified 
and estimated empirical relationships for the physical prop-
erties of the solid particles, including their shape and size. 
Another approach is DEM approach. In DEM, individual 
particles are considered within the mixer, and the forces 
acting on each particle are calculated through the specifica-
tion of contact with all other particles. This approach al-
lows for the calculation of the resulting acceleration of 
each particle through the application of the equation of 
motion. The trajectory of each individual particle is deter-
mined by applying Newton’s equation of motion, which is 
calculated by considering the forces acting on the particle 
and its acceleration. Nonetheless, it is worth noting that the 
Lagrangian approach for simulating solid mixing systems 
demands a vast amount of computational resources (CPU 
and memory). Due to the importance of particle-particle 
interaction details in solid mixing processes, DEM is 
widely utilised for investigating such processes. Therefore, 
this section will focus on a literature review of the DEM 
approach.

DEM has been utilised extensively to examine the pro-
cesses of particle mixing and segregation within a variety 
of mixer configurations (Marigo M. and Stitt E.H., 2015; 
Sakai M., 2016; Sakai M. et al., 2020). This section will 
present a review of relevant DEM studies, which will be 
summarized based on the classification of mixers.

3.1 Simulation work of tumbler mixers
Considerable DEM simulations have been carried out to 
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examine the intricate particle mixing behaviors and the 
impact of different parameters on the mixing efficiency in 
the rotating drum. For example, (Yang et al., 2016) em-
ployed DEM to conduct a three-dimensional simulation of 
the motion of solid particles in a laboratory-scale rotating 
drum. The validity of the simulation results was confirmed 
through comparison with experimental data. Subsequently, 
the active-passive interface was identified, and particle- 
scale information was obtained for both of these regions, as 
shown in Fig. 10, utilizing DEM to perform a three- 
dimensional simulation of the solid motion in a laboratory- 
scale rotating drum. The active-passive interface was  
identified upon validation of the simulation results with 
available experimental data, and particle-scale information 
were obtained for both regions. The investigation explored 
the influence of fill level and rotating velocity on the solid 
motion. The study results revealed a higher concentration 
of particles in the passive region compared to the active 
region, with a more significant collision force observed in 
the active region, particularly in the y-direction, compared 
to the x and z directions. Yamamoto et al. (2016) investi-
gated the mixing behavior of particles in a rotating drum 
mixer (RDM) by means of DEM simulation to examine the 
impact of particle density. DEM results of the study re-
vealed the effects of fill level and rotating velocity on the 
mixing behavior of stainless steel and alumina particles 
within a rotating drum. The results indicated that the lower- 
density particles had greater mobility compared to higher- 
density particles, leading to segregation. However, the use 

of lifters was found to control the behavior of both high and 
low-density particles and improve the mixing of particles. 
The mixing degree of the alumina and stainless-steel parti-
cles was evaluated, and the results were in good agreement 
with the DEM simulation. Yazdani and Hashemabadi 
(2019) examined the effects of cohesive forces and rotating 
speed on the segregation and mixing of cohesive particles 
in a horizontal rotating drum. The simulation results indi-
cated that both cohesion and rotation speed significantly 
impacted the behavior of highly cohesive particles in the 
drum, as illustrated in Fig. 11. Ma and Zhao (2017) con-
ducted an investigation on the flow of granular materials 
comprising ellipsoidal particles in a horizontal rotating 
drum by using DEM. The study focused on examining the 
influence of the aspect ratio and rotation speed of the drum 
on transverse mixing, as shown in Fig. 12. The simulation 
demonstrated that cohesive particles’ cohesion and rotation 
speed in a horizontal rotating drum significantly impact 
their behavior. The results showed that particles with lower 
sphericity had a higher consistency in their orientation and 
that better coating could be achieved at lower rotation 
speeds in the rolling/cascading regime.

Currently, numerous DEM investigations of the rotating 
drum have been conducted. Given a large number of rotat-
ing drum simulation studies, Table 2 presents a summary 
of some representative recent DEM works regarding the 
mixing processes in the rotating drum.

A limited number of simulations can be found for other 
types of tumbler mixers. Hence, the following discussion 

Fig. 10 Schematic representation of the apparatus showing the instantaneous velocity distribution of the solid phase in the rotating drum, reprinted 
with permission from Ref. (Yang et al., 2016). Copyright: (2016) Wiley Online Library.

Fig. 11 Snapshots of mixing of binary cohesive mixture for segregated loading pattern in the rotating drum containing 6000 cohesive particles with 
kii and kjj of 100 kJ/m3 and without interparticle cohesion (kij = kji = 0), reprinted with permission from Ref. (Yazdani and Hashemabadi, 2019). Copy-
right: (2019) Elsevier B.V.
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presents a review of selected literature on other types of 
mixers to provide a representative sample. Arratia et al. 
(2006) utilised DEM to examine the flow dynamics of 
spherical particles within a tumbling cone blender. The 
simulation results showed that the radial convection rate 
was more significant than the axial dispersive transport, 
leading to decreased mixing performance within this ge-
ometry. The particle velocity profiles were analysed, re-
vealing the presence of two distinct regions in the flow: a 
high-velocity layer cascading above and a region with a 
nearly solid body rotation, as depicted in Fig. 13. Ren et al. 
(2013) employed a GPU-based DEM software to investi-
gate the mixing and flow dynamics of granular materials in 
a conical tote blender. A parametric study was performed to 
evaluate the impact of fill level and rotation rate on the 
mixing rate, productivity, and energy consumption. The 
study revealed that the optimal values for fill level and ro-
tation rate could enhance mixing effectively. Moreover, the 
findings indicate that the conventional horizontal configu-
ration of the blender leads to inadequate axial mixing. 
However, tilting the blender at a specific angle can consid-
erably enhance the mixing efficiency. Tanabe et al. (2019) 
utilised DEM to assess the impact of an increase in particle 
size and a reduction in blender geometry on the uniformity 
of the blend. The study revealed that the variation in parti-
cle size among components resulted in the segregation of 
the three blends, as evidenced by the diverse standard devi-
ation of active ingredient content. The research also identi-
fied two crucial factors that impact blending performance, 
namely, the ratio of the blender container to particle size 
and the total number of particles and samples in the 
blender. Furthermore, the study demonstrated the process 
of quantitative prediction of the sample BU probability 
density distribution using DEM simulation, which can be 
found in Fig. 14.

Tahvildarian et al. (2013) employed DEM to simulate 
the behavior of monodisperse, non-cohesive particles in a 
V-blender. The simulation accounted for both particle– 
particle and particle–boundary interactions, as depicted in 
Fig. 15. As the filling level increased from 20 % to 46 %, 

the circulation intensity decreased, and at a filling level of 
34 %, it reached its minimum value for all rotational 
speeds. No significant change in circulation intensity was 
observed for filling levels greater than 34 %. The results 
also depict the particle velocity in the Y–X plane when the 
V-blender rotates from 0° to 360° at a fill level of 20 % and 
rotational speed of 30 rpm. Lemieux et al., (2008) em-
ployed DEM to predict the flow dynamics of multiple par-
ticles over extended periods, with a specific emphasis on 
the mixing phenomena that necessitate a considerable 
amount of time to develop in such systems. To this end, the 
researchers performed several extensive numerical simula-
tions using the DEM approach, investigating the flow of 
monodisperse and bidisperse blends consisting of up to 
225,000 particles for 120 seconds in a V-blender. Quanti-
ties such as particle velocity, granular temperature, mixing 
system torque, RSD curves, and mixing times are examples 
of variables commonly used to characterise and analyse the 
behavior of granular materials during mixing processes.

3.2 Simulation work of convective mixers
In contrast to the tumbler mixer, convective mixers em-

ploy stationary outer vessels with added moving compo-
nents to improve solid mixing performance.

Sarkar and Wassgren (2015) conducted a study using 
DEM to examine the impact of modelled particle size on 
flow and mixing in a bladed granular mixer. The findings 
revealed that the macroscopic advective flow was consider-
ably influenced by particle size, particularly in areas with 
sparse flow. Yaraghi et al., (2018) utilised DEM to investi-
gate the flow patterns and mixing kinetics of non-cohesive, 
monodisperse, and spherical particles in a horizontal pad-
dle blender. The authors found that the most significant 
factor affecting mixing quality was the rotational speed of 
the impeller, with the quadratic effect of the impeller rota-
tional speed and the vessel fill level having a lesser impact. 
Furthermore, the empirical data obtained on granular tem-
perature demonstrated that an increase in impeller rota-
tional speed, from 10 to 70 rpm, resulted in a corresponding 
increase in the granular temperature values. In a study 

Fig. 12 Snapshots of the flow of particles coloured by their magnitude of the translational velocity (from blue (minimum) to red (maximum)), re-
printed with permission from Ref. (Ma and Zhao, 2017). Copyright: (2017) Elsevier B.V.
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conducted by (Ebrahimi et al., 2018), the efficacy of mix-
ing monodisperse spherical particles in a horizontal agitat-
ing paddle mixer was investigated using the DEM method. 
The study involved simulating five different impeller  
designs to determine their influence on mixing perfor-
mance. The study evaluated five distinct impeller designs 
through simulation. The findings demonstrated that impel-
ler design significantly affected both the mixing perfor-
mance and the granular behavior of the materials, as 
demonstrated in Fig. 16. Additionally, the study analysed 

the effect of impeller configuration on the forces of contact 
between the impeller and particles, and between the parti-
cles themselves.

Ribbon mixers are deemed appropriate for blending dry 
powders and free-flowing granular materials. Literature 
suggests that a ribbon mixer can achieve improved unifor-
mity in powder mixing due to the high shear stresses it 
generates and its ability to handle a mixture of particles of 
varying sizes. Hence, the utilisation of DEM in analysing 
the ribbon mixer offers valuable insights into its perfor-
mance and potential optimization. Halidan et al. conducted 
a series of DEM studies investigating the mixing behaviors 
in ribbon mixers. A survey was conducted by the researcher 
to investigate the influence of impeller speed on the mixing 
behavior of cohesive and non-cohesive particle mixtures in 
a ribbon mixer, which is characterised by a horizontal cy-
lindrical vessel (Halidan et al., 2016; Musha et al., 2013). 
The DEM simulations indicated that the mixing rate of 
both cohesive and non-cohesive mixtures in the ribbon 
mixer increased as the impeller speed increased up to a 
certain threshold, after which a decrease was observed. For 
non-cohesive particles, the mixture quality may deteriorate 
at higher impeller speeds, but this was not the case for co-
hesive particles. Halidan et al. (2018) employed DEM to 
examine the impact of impeller speed and fill level on the 
blending behaviors of particle mixtures with varying  

(a) (b)

Fig. 13 Example of velocity fields of a mono-disperse system at 40 % 
fill level. (a) Side view at 3/4 of a revolution. (b) Top view at 3/4 of a 
revolution, reprinted with permission from Ref. (Arratia et al., 2006). 
Copyright: (2006) Elsevier B.V.

Fig. 14 Quantitative prediction of the sample BU probability density distribution in reality using the DEM simulation, reprinted with permission 
from Ref. (Tanabe et al., 2019). Copyright: (2019) Elsevier B.V.
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cohesion in both two-bladed and four-bladed ribbon mix-
ers, each possessing a horizontal cylindrical vessel. Beyond 
that, the mixing rate was observed to decline. In particular, 
the mixing rate of cohesive particles was found to deteriorate  
at higher impeller speeds in the 2-bladed mixer. The results 
showed that with an increase in fill level, the flow behavior 
of non-cohesive particles changed from sliding flow to re-
circulation flow and eventually to cascading flow. The 
comparison results can be seen in Fig. 17. Chandratilleke 
et al. conducted a numerical investigation of the impact of 
blade-supporting spokes on the overall mixing perfor-
mance in a ribbon mixer using DEM. This study analysed 
the effect of several key variables, including the number of 
spokes, the cohesiveness of particles, and the fill level on 
the mixing performance. The results indicated that, in the 

case of non-cohesive particles, increasing the number of 
spokes was advantageous for improving the overall mixing 
rate when the fill level was substantial. However, this im-
provement came with the cost of increased contact forces.

In contrast, the best overall mixing performance was 
observed with a no-spoke impeller for cohesive particles. 
The critical findings are depicted in Fig. 18. Subsequently, 
DEM was used to examine the impact of particle size and 
density on particle mixing in a laboratory-scale ribbon 
mixer (Chandratilleke et al., 2021). The study conducted by 
Basinskas and Sakai (2016) employed numerical simula-
tions to examine the impact of various factors on the degree 
of mixing in a laboratory-scale ribbon mixer. The results 
indicated that the mixing rate decreased as the particle size 
was reduced with the fill level fixed, and the density effect 

Fig. 15 Particle velocity in the Y-X plane when the V-blender rotated from 0° to 360° at 20 % fill level and 30 rpm, reprinted with permission from 
Ref. (Tahvildarian et al., 2013). Copyright: (2013) Elsevier B.V.

Fig. 16 A snapshot of particle mixing after 10 revolutions of mixing from the front view sliced at the centre of the mixer, reprinted with permission 
from Ref. (Ebrahimi et al., 2018). Copyright: (2018) Elsevier B.V.
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was negligible for small particle sizes. An empirical equa-
tion was formulated to describe the particle-size effect, 
which was also extrapolated to consider much smaller par-
ticles. The present investigation employed numerical 
methods to assess the impact of powder quantity, blade 
speed, and initial loading on the degree of mixing in a rib-
bon mixer (See Fig. 19). The degree of mixing in the axial 
direction was found to be relatively less variable than that 
in the perpendicular direction. The results indicated that the 
amount of powder and the blade speed positively influ-
enced the mixing performance. However, the study found 
that only the initial loading and powder quantity had a sig-
nificant impact on the quality of mixing in the ribbon 
mixer, with only modest variations observed in the axial 
direction compared to the perpendicular direction. Re-
cently, several noteworthy DEM studies on the mixing 
processes in convective mixers have been reviewed and 
summarized in Table 3.

4. Current progress and future perspectives
The mixing of particles is a common practice in several 

industries, including ceramics, pharmaceuticals, food, and 
chemicals, where a high-quality end product is crucial. The 
quality of powder products, which are composed of partic-
ulate ingredients that must be thoroughly mixed, is heavily 
influenced by the design of the mixer and its operating 
conditions. Various types of mixers, such as rotating drums, 
orbiting screw mixers, and ribbon mixers, are used for this 
purpose. However, the mechanism of particle mixing in 
these mixers is still not well understood due to the complex 

nature of particle behavior in the mixing system. Under-
standing and controlling particle behavior during mixing 
remains a significant challenge for improving the operation 
and optimization of mixers. Up to date, the design of solid 
mixers is generally limited to first selecting qualitatively 
the equipment that might be suitable and then arranging 
tests with potential suppliers, where unified theory and 
criteria are still not available due to insufficient knowledge 
of the mixing mechanism. An extensive understanding of 
particle mixing is crucial both from a scientific perspective 
and a practical standpoint to optimise industrial processes 
related to it.

Despite the prevalence of powder mixing in various in-
dustries, there remains a lack of robust and systematic 
methods for characterizing mixing quality and determining 
the optimum mixing conditions. This has motivated re-
searchers to focus on developing more advanced experi-
mental techniques to better understand the underlying 
physics and mechanics of particle mixing. By improving 
our understanding of the mechanisms and principles that 
govern particle mixing, researchers aim to improve the ef-
ficiency and quality of powder processing. Therefore, there 
is a growing need for improved experimental techniques 
and advanced simulation methods to better understand 
particle mixing behaviors and incorporate the particles’ 
microscopic properties into the models. This would lead to 
a more accurate prediction of mixing performance and 
could aid in the design and optimization of industrial solid 
mixing processes. Additionally, the integration of experi-
mental data and simulation results can help to establish a 

Fig. 17 Effect of fill level on the mixing performance of a 2-bladed mixer at different Bond numbers (shaft speed = 100 rpm), reprinted with permis-
sion from Ref. (Halidan et al., 2018). Copyright: (2018) Elsevier B.V.
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more comprehensive understanding of particle mixing, 
which is crucial for the continuous improvement of the 
powder processing industry. Additionally, developing more 
advanced computational models that consider the micro-
scopic properties of particles will be critical to understand-
ing and improving the efficiency of solid mixing processes 
in the industry (Ghadiri, 2020). This, in turn, can lead to 
significant advances in the quality and consistency of a 
wide range of powder products, as well as reduced energy 
consumption, lower costs, and reduced environmental im-
pact associated with the production of these products.

Moreover, the integration of Industry 4.0 technologies, 
such as the Internet of Things (IoT) and artificial intelli-
gence (AI), can further enhance the accuracy and efficiency 

of measurement and control systems, thereby enabling 
more effective and efficient solid mixing processes in the 
future (Bowler et al., 2020). It is also worth focusing on the 
recently developed soft sensors, expected to gain popular-
ity as they provide a low-cost and simple-to-implement 
method of predicting final product qualities.
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