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Since the early 2010s, after decades of premature excitement and 
disillusionment, the field of artificial intelligence (AI) is experiencing 
exponential growth, with massive real-world applications and high 
adoption rates both in daily life and in industry. In particle technology, 
there are already many examples of successful AI applications, 
for predictive modeling, process control and optimization, fault 
recognition, even for mechanistic modeling. However, in comparison 
to its still untapped potential and to other industries, further expansion 
in adoption rates and, consequently, gains in productivity, efficiency, 
and cost reduction are still possible. This review article is intended to 
introduce AI and its application scenarios and provide an overview and 
examples of current use cases of different aspects and unit operations 
in particle technology, such as grinding, extrusion, synthesis, characterization, or scale up. In addition, hybrid modeling approaches are 
presented with examples of the intelligent combination of different methods to reduce data requirements and achieve beneficial synergies. 
Finally, an outlook for future opportunities is given, depicting promising approaches, currently being in the conception or implementation 
phase.
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1. Introduction
Artificial intelligence (AI) has reached critical applica-

bility rates in recent years as a consequence of algorithmic 
improvements, exponential gains in hardware and data 
generation, and increasing improvements in available 
infrastructure, such as the current focus on parallelization 
and dedicated hardware solutions (ASICs) (LeCun et al., 
2015).

Consequently, AI is increasingly being adopted in all 
aspects of daily life and throughout industries. In particle 
technology, there are many areas in which AI techniques 
are already being applied, but dependent on the specific 
background such as the ability to rely on or generate large 
amounts of data, security aspects, availability of sensors, 
the ability to dynamically interact with processes, etc., 
which lead to varying rates of and requirements for the 
adoption of AI. Practical examples encompass a wide vari-
ety of areas within particle technology, such as predictive 
modeling of grinding results, kinetics, pathways, stability, 
mixing and quality, preprocessing of data, shape control in 
particle synthesis and parameter control in general, yield 
optimization, separation via machine vision, use as soft 

sensors, improvement of measurement results, surrogate 
modeling, etc.

Similarly, AI itself is an umbrella term. This review arti-
cle builds on more general articles about AI in the context 
of process engineering (Thon et al., 2021; Pham and Pham, 
1999; Linkens, 1990; Mavrovouniotis, 2012; Lee J.H. et 
al., 2018) and focuses on the context of particle technology 
specifically. Furthermore, general reviews exist, such as 
of mechanical engineering (Patel et al., 2021), electrical 
engineering (Sakunthala et al., 2017), material science 
(Pilania, 2021), and chemical engineering (Schweidtmann 
et al., 2021; Ashraf et al., 2021; Venkatasubramanian, 
2019). On the other hand, focused review articles for 
specific subfields within particle technology exist, such as 
for related autonomous processes (Nirschl et al., 2022) or 
nanoparticle drug formulations (Uhlemann et al., 2021), 
although, to date, no conclusive overview of the field of 
particle technology has been provided, which is the focus 
of this review article.

In this paper, prominent techniques such as neural nets 
or evolutionary algorithms are discussed and an overview 
of hybrid modeling techniques and examples of ensemble 
methods (the intelligent combination of techniques) are 
provided.

In the following, based on a short summary of important 
AI methods, examples of applying AI to important aspects 
of particle technology, including unit operations such as 
grinding, synthesis, modification, or classification, as well 
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as particle analysis and scale up procedures, are reviewed. 
Finally, an overview is provided to depict near-term oppor-
tunities and untapped potentials.

2. Introduction into Artificial Intelligence
AI encompasses a wide spectrum of techniques like 

artificial neural networks (ANN), genetic algorithms (GA), 
Hidden Markov Models, and others. First introduced at the 
famous 1956 Dartmouth conference with the goal to emu-
late general human cognitive capabilities, AI experienced 
three major waves of enthusiasm and disillusionment as 
a consequence of initial hype and overestimations on one 
side and hardware and software limitations on the other. 
It was not until the early 2010s that AI experienced major 
breakthroughs in real-world applications and adoption 
rates, with the most common AI techniques used today 
being deep neural networks (DNNs) (Ongsulee, 2017).

Fig. 1 depicts the basic principle of ANNs. Being 
loosely inspired by the brain, the fundamental building 
blocks are neurons, which are connected. The neurons are 
arranged in layers, with the first layer being denoted as the 
input layer and the last one as the output layer. Each input 
and output node is a representation of an input and output, 
e.g., a parameter of a process, a pixel in an image, or a 
word in a text. Inputs can be binary, integers, or continuous 
values. Between these two layers are a number of hidden 
layers, in which the modeling is taking place. Between the 
neurons of neighboring layers, the different connections 
have dedicated weights associated with them.

As can be seen in the right part of Fig. 1, which is 
zoomed out for one representative neuron, inputs are 
multiplied with their respective weights and consequently 
summed. The summed weight is further processed via an 
activation function; the resulting value is then propagated 
forward to successive neurons of the following layer. 
Through different activation functions, linearities, non- 

linearities, or other patterns can be introduced, with the 
resulting behaviors of the overall system changing, such 
as spiking neural nets appearing, etc. Being a hierarchical 
statistical system, ANNs have generalizing capabilities 
because they process more complex patterns of a higher 
order on the basis of detected lower-order patterns of 
more limited complexity. The goal of AI training is the 
iterative optimization of connection weights in order to 
get correct outputs for given inputs based on training data. 
The classical approach for this is backpropagation in which 
after each iteration, a loss function is determined for the 
successive analytical approximation and adjustment of the 
weights. Specifically, for large AI systems with an abun-
dance of training data, backpropagation is the classically 
used training approach, although it has a strong tendency 
toward overfitting in cases with limited data sets. Alter-
native systems exist, which are focused on training with 
more limited data, such as genetic reinforcement learning 
(GRL), which was described in greater detail in Thon et 
al. (2022b) and can be described as the training of AI via a 
genetic algorithm.

In addition, there exists a plethora of techniques to 
prevent overfitting, which can also be combined to achieve 
more general models, such as regularization, feature 
selection, early stopping, layer removal, or dropout. Reg-
ularization encompasses techniques to prevent the training 
of too complex models, e.g., through the use of penalties or 
changes in the neural network architecture upon training. 
L1 (Lasse regularization) and L2 (ridge regression) modify 
the penalties in training by adding an absolute value or the 
squared value of magnitude (Demir-Kavuk et al., 2011). 
In dropout, as another regularization method, neurons are 
randomly deactivated during training to prevent excessive 
co-adaptation (Srivastava et al., 2014). Feature selection 
is another method to prevent overfitting by restricting 
the training to only the most relevant features in case of 
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Fig. 1 Depiction of a neural net, with an input, an output, and two hidden layers. Connections between neurons of layers feature dedicated weights. 
Incoming inputs from former layer neurons are summed and multiplied according to an activation function, e.g., to introduce non-linearities.
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the initial number of features in the data being too large 
(Hawkins, 2004). Early stopping describes the techniques 
of evaluating training over epochs with independent data 
(also termed “hold up”) to quit training once a degradation 
of the loss becomes detectable, indicating overfitting and 
a loss in generalizing capabilities (Ying, 2019). Cross- 
validation, as a more advanced version of hold up, allows 
for training and evaluation with independent data, with 
varying assignments of the data groups to train and test 
data, allowing all data to be used for training (Schaffer, 
1993).

GAs are another tool often used, specifically for op-
timization tasks but also for modeling and regulatory 
applications. As shown on the left in Fig. 2, GAs are a 
population-based approach that mimics Darwinian evolu-
tion in biology.

As a starting point, a population of parameter sets (usu-
ally consisting of a fixed and, throughout the population, 
identical number of entries with variable values) is eval-
uated according to a stated goal. If, for instance, process 
parameters in a stirred media mill are to be optimized with 
regard to maximum energy efficiency, production yield, 
or the optimal combination of both KPI, measures for the 
optimization goal or for multiple goals are established, and 
the optimizable parameters are defined. Evaluation of the 
specified goals of initial parameter sets is performed for the 
selection of the most suitable parameter sets. A subsequent 
crossover of selected areas in the parameter space results in 
a new generation with mixed attributes from the previous 
generation. In addition, mutations are induced at specified 
rates to increase the “genetic” diversity of the population 
and to avoid optimization within local minima. Through 
iterative execution over multiple generations, eventually 

(under constant environmental conditions), a steady state 
is reached with ideally close to optimal parameter settings.

Genetic programming, shown on the right side of Fig. 2, 
applies the same steps for the iterative evolution of deci-
sion tree structures or decision trees. These tree structures 
can represent computer programs, with respective opera-
tors and numbers being the nodes in the tree, to automat-
ically develop code. Alternatively, the trees can represent 
mathematical operators for the evolution of fitting equation 
systems for the description of data sets for modeling tasks. 
The technical term for genetic programming, when applied 
to formulas, is symbolic regression. In principle, all tree-
based tasks can be optimized with genetic programming.

A more detailed summary of underlying AI techniques 
can be found in more general review papers (Krishna et 
al., 2018; Rupali and Amit, 2017; Raschka et al., 2020; 
Rahmani et al., 2021; Thon et al., 2021).

Key criticisms of AI are usually its inherent lack of 
transparency and its empirical nature. Different methods 
exist to address these issues including explainable AI 
(XAI), reverse engineering strategies, and hybrid or gray-
box modeling. Often, respective disadvantages of different 
AI methods can be compensated for by the intelligent com-
bination of different methods such as ensemble methods 
or hybrid approaches (Stosch et al., 2014). For instance, 
as seen in Fig. 3, predictive neural net modeling as a black 
box can be utilized in order to create a model with gener-
alizing capabilities for the subsequent prediction of virtual 
training data for genetic programming.

The generalizing capabilities of genetic programming 
are more limited than those of neural nets. The technique 
is, however, intrinsically more transparent. In conjunction 
with additional methods, genetic programming even allows 
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Fig. 2 Two common evolutionary algorithms, genetic algorithms and genetic programming, emulating Darwinian evolution on technical use cases. 
On the left, settings for a fixed set of parameters are optimized via successive generations of parameter mutations, crossover between candidates, and 
the evaluation and selection of suitable candidates in the population. On the right, the same principles are applied in genetic programming, but on the 
basis of decision trees of theoretically unconstrained complexity, representing computer code, rule sets, or mathematical equations, with the latter 
one called symbolic regression. Reprinted from Ref. (Thon et al., 2022b) under the terms of the CC-BY 4.0 license. Copyright: (2022) The Authors, 
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for the incorporation of physical relations (Udrescu et al., 
2020).

In addition, as can be seen in Fig. 3, for an exemplary 
data foundation (blue), the generated equation represents 
a simpler (more transparent), though still accurate, relation 
when compared to neural net predictions (orange lines).

Similarly, McKay et al. (1996) proposed a nonlinear 
dynamic model using two different paradigms. In this 
work, they tried to compare the recurrent neural network 
and the genetic programming algorithm to build a viscosity 
model. They showed that in this particular case, the genetic 
programming model has simpler transparency than neural 
networks.

Beyond the combination of neural nets and evolutionary 
approaches, hybrid models, shown in the lower part of 
Fig. 3, are well suited for mechanistic modeling and the 
incorporation of existing empirical or white-box models. 
In a serial approach, a white-box model can be applied to 
preprocessed data from AI or in a direction opposite to the 
preprocessed data based on known relations for subsequent 
AI modeling. Running in parallel, black-box AI models 

can be used to compensate for the shortcomings of existing 
white-box models by merely modeling the divergence 
between white-box model predictions and reality. The par-
allel AI can, for instance, be broken down again via genetic 
programming to iteratively extend the white-box model 
(Thon et al., 2021, 2022b; Evans et al., 2019). In modular 
hybrid models, an interconnected system of sub-AI models 
is set up to mirror the known structure of its physical coun-
terpart and facilitate the modeling effort. Combinations of 
hybrid models are possible, such as a mixture of a serial 
and a parallel semiparametric model, as Psichigios and 
Ungar (1992) demonstrated.

In addition, a wide variety of reverse engineering strat-
egies exist to deconstruct or deduce the inner workings of 
trained AI systems, such as sensitivity analysis, dropout, 
deconvolution, rationalization, LIME, GAM, gradient 
descent, neuron activation, etc.

3. Applications of AI in particle technology
Table 1 provides an overview of AI applications for 

various categories of particle technology unit processes. 

White 
box 
Model
c=f(b)

a b
c

White box 
Model
c=f(b) 

a c

Semiparametric model

Serial model Parallel model
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Fig. 3 A combination of predictive models based on neural nets to gain generalizing capabilities and genetic programming for the subsequent 
deduction of more transparent mathematical models, in which equation modeling is performed on the basis of predictions from the neural net model. 
Examples are provided for the results of both approaches, with blue columns marking training data and orange lines the respective model prediction. 
Furthermore, hybrid modeling approaches are depicted, as well as serial and parallel semi-parametric models, modular models, and a possible com-
binatorial approach.
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The four classical unit operations of grinding, separation/
classification, mixing, and agglomeration/granulation are 
elaborated on later in this paper, as well as bottom-up 
methods such as particle synthesis and characterization 
methods, including rheology.

Unit operations in particle technology are sometimes 
applied in isolation. In industrial operations, however, 
they are often combined and interconnected in complex 
plants. Possible assemblies vary to a significant degree, 
with some being more prominent. As can be seen in 
Fig. 4, the characterization of educts, products, or inter-
mediary products can accompany the entire production 
flow and is often performed online during processes, 
as is modeling and the scale-up of operational steps. 
Mixing is an important operation embedded in the be-
ginning of a process, repeated throughout the process 
flow, or integrated into other unit operations. Grinding 
as a top-down approach and synthesis as a bottom- 
up approach are typical operations for the production of 
particles. Stabilization/functionalization, agglomeration, or 
precipitation are unit operations often performed succes-
sively after the production of primary particles, although 
integrative approaches such as parallel stabilization during 
grinding or synthesis are also often applied. After produc-
tion, primary particles, agglomerates, or aggregates can 
be classified, e.g., according to their size, morphology, or 
other characteristics and can be further processed, e.g., via 
extrusion. This brief overview is intended as a simplified 
representation of inter-dependencies and how unit oper-
ations can be integrated and connected in practical appli-
cations. The individual unit operations and accompanying 
steps are discussed in regard to the application of AI and 
evolutionary approaches.

In this regard, descriptions are given together with the 
AI-specific tasks (predictive modeling, classification, op-
timization, etc.) and the used types of AI (ANNs, genetic, 
algorithms, and hybrid models, etc.), as well as the training 
data source (experiments, simulations, data banks, etc.). 
In the following, the respective examples for the different 
categories are described in more detail.

At the time of this review article, numerous works ex-
isted. However, distribution throughout the different tasks 

and unit operations is inhomogeneous, with many mostly 
small-scale academic applications and a much smaller 
number of practical industrial adoption cases for large 
connected systems or plants. Distribution between indi-
vidual unit operations and accompanying steps is similarly 
inhomogeneous, with most publications focusing on initial 
unit operations such as grinding, while examples for later 
unit operations such as extrusion are rarer. Furthermore, 
most of the published works with real-world applicability 
are very recent since they became possible only in the last 
five years, with more publications appearing closer to the 
date of this review. This indicates that there is significant 
untapped potential in the field for the adoption of AI tech-
niques and aligns well with adoption rates in most other 
industries, with some featuring more advanced adoption 
rates.

3.1 Grinding
A plethora of techniques for the creation of product 

particles exists, as is elaborated on in subsequent chapters. 
Grinding is the most widespread technique used through-
out many industries for a large variety of materials and 
products. As a top-down approach, it is suitable to cost- 
effectively process large quantities of material. With a de-
velopmental history almost as old as human cultural history 
itself, starting with the grinding of grains, modern available 
equipment is well established, sophisticated, and available 
in a large variety for more specialized applications such as 
mechanochemical reactions.

AI-based preprocessing can, for instance, be applied 
as an initial step for predictive modeling. Going to more 
sophisticated systems, modular predictive models allow for 
the modeling of more complex plants, which can be aided 
by hybrid modeling and white-box model combinations. 
Based on this optimization, anomaly detection and mech-
anistic modeling can be utilized, and examples for these 
increasingly sophisticated models are provided.

Dimensionality reduction: As depicted in Fig. 5, one 
of the first possible tasks that can be performed in an 
AI process flows is data preprocessing and dimension-
ality reduction, for instance, through the use of auto 
encoders. With grinding, Qu et al. (2017) trained a hybrid  

Mixing Synthesis
Grinding

Stabilization
Agglomeration
Precipitation

Classification
Extrusion

Modeling and Scale-up

Characterizations

Educts Products

Fig. 4 Unit operations in particle technology.
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auto-encoder-Softmax network and an RNN-LSTM net-
work for fault recognition in a grinding system. One thou-
sand experimentally gained data points were used, with 30 
dimensional input features.

Via the reduction of the number of involved dimensions, 
the complexity of the data set can be drastically reduced, 
making successive conventional or AI modeling easier. In 
Qu et al., dimensionality can be reduced from 30 dimen-
sions (such as temperatures, pressures, sounds, vibrations 
in different regions of the grinding system) to 24 (Qu et al., 
2017). Input and output layers are set up identically. The 
encoder side is intended to reverse engineer and reconstruct 
the previously decoded representations from the input side 
as accurately as possible. The narrowing of intermediary 
hidden layers enforces more compact representations with 
reduced features.

Predictive modeling of single units: Based on experi-
mental data, the authors of this review article trained pre-

dictive models (see Fig. 6), for grinding Quarz in a stirred 
media mill (PM1 from Bühler). Input process parameters 
such as tip speed, solid content, and fluid volume flow were 
varied, and additional values for torque and power were 
measured. An ANN was then optimized and trained.

The cumulative particle size distributions (PSD) were 
normalized and represented via a discretized grid, with 
the distribution curve being in a grid cell translating to 
a cell value of 1 or 0. The resulting binary values were 
assigned to the output nodes of the net. Consequently, 
for novel input parameter settings, heat-maps can be 
generated to mark the likelihood that the respective 
cumulative curve will pass through a cell. During post- 
processing, resulting scatter plots were derived and con-
verted to approximation cumulative curves. In the right 
lower part of Fig. 6, predicted X50 (describing the particle 
size within the distribution, at which 50 percent of particles 
are smaller and 50 percent larger) values are depicted over 
the respective X50 values of the independent evaluation data 
points. The approach was further optimized for the predic-
tion of fitting parameters, which is elaborated on later in the 
context of describing a predictive breakage tester AI.

Modular predictive hybrid modeling of plants: Dai et 
al. proposed a parallel semiparametric hybrid particle size 
estimation model, in combination with a random vector 
functional-link network (RVLFN), with the examined 
grinding circuit mainly consisting of an interconnected sys-
tem comprising a ball mill and spiral classifier (see Fig. 7).

The ball mill’s first principle model was based on popu-
lation balance equations; the classifier was described by its 
own mechanistic model (Dai et al., 2015).

Based on these these underlying models, sensitivity 

Input layer

Output layer

Hidden-Intermediate 
representation

Encoder

Decoder

Fig. 5 Autoencoder networks with an encoder and a decoder side are 
often used for dimensionality reduction, as smaller hidden layers act 
as a bottleneck, forcing intermediary representations with narrower 
features.

Inputs x:
Torque
Tip speed t
Solid content
Volume �low
Time
Net power 

…

PSD

Outputs y:
[0, 0, 1, . . . ]

Fig. 6 Predictive model for experimental grinding results. For varied process parameters such as tip speed and solid content, resulting particle sizes 
were predicted, with one output for X50 (marking the particle size in the distribution, where 50 percent of the particles are smaller and 50 percent are 
larger) and the other a heat map for the representation of the entire particle size distribution (original work by author).
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analysis and pre-predator optimization algorithms were 
utilized in order to reduce parameter optimization com-
plexity. For the resulting error, the RVFLN was trained to 
compensate for the first principle method’s error, resulting 
in an overall system with significantly higher accuracy (Dai 
et al., 2015).

Similarly, Tie et al. (2005) demonstrated PSD estima-
tion via an on-line soft sensor for a setup consisting of a 
hydrocyclone overflow and a multitude of accompanying 
machines such as ball mills in two connected semi-circular 
grinding circuits, as shown in Fig. 8.

The underlying basic structures were divided utilizing a 
modular approach, while the classifier and hydrocyclone 
were described with respective ANNs.

The percentages of solids in the mass flow with diame-
ters smaller than 75 μm, M75, were modeled via AI in de-
pendence of masses, concentrations, and respective flows 
for both the cyclone and spiral classifier. Mass percentage 
was furthermore modeled in dependence of multiple rel-
evant parameters such as shaft power and recycle slurry 
flow rate. Sump modeling was based on a first principle 
population balance equation approach. The respective nets 
acting as functions in the overall setup (f1 for the cyclone 
and f2 for the classifier) were both radial basis function 
networks (RBF). In addition to the described models for the 
modeling of nominal process conditions, an adaptive neuro 

fuzzy inference system (ANFIS) model was trained for the 
upstream prediction of anomalies and malfunction, e.g., in 
case of excessive slurries. A subsequent fuzzy logic coordi-
nator was applied for model connection (Tie et al., 2005).

Simulation-based modeling and breakdown for 
mechanistic modeling: AI modeling based on simulations 
is an approach with distinct advantages due to the coupling 
of two numerical approaches, as they can autonomously 
interact with one another unsupervised (for instance in 
active learning (AL), etc.). As an example, on the basis of 
two-way coupled computer fluid dynamics - discrete ele-
ment method (CFD-DEM) simulations with Rocky DEM 
and Ansys Fluent, a representative slice of a wet operated 
stirred media mill was simulated with varying tip speeds 
and grinding bead diameters (Thon et al., 2022a; 2022b). 
Heatmaps were extracted, with each voxel representing the 
averaged values of relative velocities. Fig. 9 depicts the 
results of the approach.

On the left side of Fig. 9, heatmaps for an independent 
test case not used in training are shown, with the prediction 
respectively depicted over the independent simulation 
result. Averaged values in 14 layers, as well as the density 
distribution of the entire domain for relative velocity, 
demonstrate the good fit of the result. The results also 
proved the advantages of GRL, as the models achieved sig-
nificantly more accurate results in comparison to classical 
backpropagation. Finally, genetic programming was ap-
plied to identify a fitting equation to describe the relation-
ship between the relative velocities 99 of colliding beads 
(99 percent had smaller energies) and the absolute tip speed 
of the stirrer. Depicted in the lower right corner of Fig. 9, 
parameter settings in random order are depicted, with red 
marking the equation and black the evaluation data.

The methodology was further improved and adapted to a 
vertical dry stirred media mill (original unpublished work 
by the author), demonstrating its universality, regardless of 
wet and dry states in grinding. In this case, a vertical mill 
was numerically investigated in Rocky DEM. Restitution 
coefficients and friction coefficients were determined and 
calibrated beforehand. Stirrer tip speed, grinding bead size, 
and grinding aids for the variation of powder flowability 

Fig. 8 Investigated connected setup with multiple machines used for PSD prediction with machine learning in a soft-sensor approach. Reprinted with 
permission from Ref. (Tie et al., 2005). Copyright: 2005 B.V.

Fig. 7 Milling setup consisting of a bin, a feeder, the ball mill, and a 
spiral classifier. Reprinted with permission from: Ref. (Dai et al., 2015).
Copyright: 2015 B.V.
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(considered via the preliminary determined calibration 
parameters in the simulation) were chosen as input param-
eters, and the relative velocity voxels of the discretized 
mill domain (with a resolution in x, y and z of 46 × 22 × 22 
voxels) were considered the output (see Fig. 10).

Adding to the previous approach, a convolutional neural 
net (CNN) was applied. CNNs are an approach often used 
in image recognition, in which pooling layers are intro-
duced, with a sliding box sampling and condensing the 
features of a wider discretized domain, which can be seen 
in the upper part of Fig. 10. It can be seen that the predicted 
result comes close to the real values, which is also evident 
in the density distribution curve with close to convergent 
curves.

The main advantage of predictive AI as an intermediary 
modeling tool lies in its generalizing capabilities. Based 
on evaluated generalizing models, AI predictions can be 
obtained in inference for a large parameter space of high 
resolution whose systematic simulation, if performed com-
pletely, can take significantly longer. In the case of the wet 
mill simulation, systematic AI predictions were generated 
in the order of seconds, which would have taken time in the 
range of years with conventional CFD-DEM simulations 
(Thon et al., 2022a; 2022b).

3.2 Synthesis
AI can be used for the prediction of various particle 

properties and required synthesis pathways, as well as for 
the investigation of their correlations. Furthermore, AI can 
be used for synthesis control and optimization to achieve 
desired results.

Energy growth prediction: Chen and Dixon (2018) 
developed a machine learning (ML) approach to identify 
the relationships between the structure and surface and 
fragment energy in ZnO nanoparticle morphologies in  
bottom-up growth using nanoparticle fragments and de-
rived means for the classification and energy expression of 
the nanoparticles. The focus was on the ML-based investi-
gation of the stability, phase transition, and growth patterns 
of clusters, ultra-small nanoparticles, and bulk-sized parti-
cles based on fragment geometries and energy parameters.

Shape prediction: Pellegrino et al. (2020) demonstrated 
an ML approach for the predictive modeling of TiO2 
nanoparticle morphology, the size, polydispersity, and 
aspect ratio in dependence of process parameters such as 
the initial concentrations of Ti (TeoaH)2, additive con-
centrations of TeoaH3 as the shape controller, pH values, 
temperature in a hydrothermal synthesis process. Inversely, 
it can be used as a reverse-engineering approach to predict 
optimal process conditions for specific desired product 

AI
 p

re
di

ct
io

n
Si

m
ul

at
io

n

Li
ne

 d
is

ta
nc

e
[-]

Li
ne

 d
is

ta
nc

e
[-]AI

 p
re

di
ct

io
n

Si
m

ul
at

io
n

Layers [-]

AI prediction
Simulation

AI prediction
Simulation

Translational velocity mean [m/s]

Translational velocity mean [m/s]

Test_Kinetic_Distribution
Pre_Kinetic_Distribution

Histogramm / predicted
Histogramm / Test

Ke
rn

el
 D

en
si

ty
Es

tim
at

io
n

[-]

Pa
rti

cl
e 

nu
m

be
r d

is
tri

bu
tio

n/
 H

is
to

gr
am

[-]

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

[-]

Fig. 9 A predictive mill model trained on the basis of a coupled CFD-DEM simulation. The simulation and prediction domain were discretized for 
the predictive modeling of the relative velocities of colliding beads as a measure of kinetic energy via heatmaps. Comparisons between AI predictions 
for independent simulation cases, not used for training, are depicted, showing good accuracy. Furthermore, a comparison of averaged values for char-
acteristic regions in 14 layers of the mill, as well as for the entire domain, is provided. Finally, with genetic programming, a fitting equation describing 
the relationship of relative velocity 99 with tip speed was identified, being depicted for 22 parameter combinations in random order. Adapted from 
Ref. (Thon et al., 2022b) under the terms of the CC-BY 4.0 license. Copyright: (2022) The Authors, published by Elsevier.
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characteristics in terms of aspect ratio, morphology, and 
size.

Process control for shape (hybrid): Zhang et al. 
(2012) demonstrated a hybrid model to control particle 
size distribution in a cobalt oxalate synthesis process, 
with the first principle model capturing the known process 
characteristics with a partial least-squares (PLS) regression 
ML model to compensate for its shortcomings, with the 
combined model being capable to model the PSD evolu-
tion. The reaction took place in a two-reactor system being 
connected in series, with the first acting as an ammonium 
oxalate dissolver and the second being responsible for the 
successive crystallization.

Process optimization for yield: Jose et al. (2021) 
demonstrated that AI in the form of multi-object ML opti-
mization can also be used for the optimization of product 
yields with the example of ZnO nanoparticle synthesis. 
The optimization relied on high-yield microreactors and 
high-throughput analysis. In less than 100 experiments, op-
timization could be achieved, allowing for the continuous 
production of 1 kg per day. A scalability assessment of the 
approach was conducted.

Prediction, experimental planning, and synthesis- 

assistance: A dedicated review article that Tao et al. (2021) 
conducted focused on the use of AI in the specific context 
of nanoparticle synthesis. Examples were provided for the 
prediction of nanoparticle properties, the assistance of the 
synthesis, experimental planning, and data generation in 
the contexts of semiconductor, metal, carbon-based, and 
polymer nanoparticles. However, most current applications 
in the field focus on the identification and optimization of 
existing procedures, with some targeting the identification 
of novel particles and procedures.

3.3 Stabilization and Functionalization
After or during synthesis (e.g., during in-situ stabiliza-

tion) and in the context of other unit operations (such as 
fine grinding, agglomeration, etc.), stabilization is required, 
as generated product particles would otherwise agglomer-
ate uncontrollably. Identification of suitable stabilizers can 
be a laborious task, with the result and emerging properties 
often being unpredictable. Here, AI modeling can be a 
useful tool in predictive identification and the estimation 
of resulting properties in regard to solution or adsorption 
capabilities and resulting stability.

Prediction of solution capabilities: Astray et al. (2017) 
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Fig. 10 Predictive models for relative velocities in a vertical dry stirred media mill with an improvement of the modeling approach by applying 
convolutional neural nets with integrated pooling layers. Very accurate models can be trained with heatmaps depicted for an independent evaluation 
case (test), with the initial prediction based on backpropagation and the final prediction following GRL. Both the side and top views of heatmaps and 
the whole domain density distribution show good alignment (original work by author).
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showed an AI model to predict the solution properties of al-
kylammonium surfactants such as density, surface tension, 
and kinematic viscosity as functions of input parameters 
such as concentration, carbon number, and the molecular 
weight of surfactants, with an R2 of 0.97.

Prediction of adsorption capabilities: Faghiri et al. 
(2019) trained an AI model based on least-square vector 
machines to predict the surfactant adsorption of sandstone 
in the context of oil recovery. Parameters were surfactant 
density, concentration, time, and kinetic adsorption density. 
Good predictive capability could be reached for kinetic ad-
sorption density, with R2 accuracies for independent testing 
data of around 0.96.

Prediction of final stability: Kundu et al. (2016) 
focused on stabilization in emulsions. A hybrid multiple 
inputs and multiple outputs (MIMO) ANN-GA model 
was used to predict the formation and stability of (o/w) 
petroleum emulsions during stirring, with parameters being 
oil and surfactant concentration, stirrer tip speed, and pH 
value. Prediction errors were at around five percent.

Li L. et al. (2020) modeled the stability of Al2O3- 
ethylene glycol nanofluids via an ANN in dependence of 
particle size distribution and velocity ratio (the ratio be-
tween Brownian particle velocity and gravitational settling 
velocity). The nanoparticles in ethylene glycol were mag-
netically stirred and positioned in an ultrasonic bath. Input 
parameters were thermal conductivity, viscosity, mass 
fraction, and temperature. R2 accuracy ranged between 
0.98 and 0.99.

3.4 Precipitation
Precipitation is an approach whereby the addition of 

agents or changes in other influencing parameters such as 
temperature in a solution can rapidly force specific materi-
als out of the solution to form defined, mostly amorphous 
particles. In slower dissolution, the resulting particles 
crystalize. In both cases, the prediction of suitable con-
ditions and the estimation of the result are difficult tasks, 
which usually involve much often intuitive manual exper-
imentation to identify equilibrium states, resulting process 
kinetics, and the final amount of precipitate.

Equilibrium prediction: Leal et al. (2020) demon-
strated an on-demand ML (ODML) algorithm to predict 
based on simulation results new chemical equilibrium 
states effecting precipitation in fluids on the basis of the al-
ready past chemical equilibrium states in reactive transport 
simulations to reduce computing costs based on simulation 
results.

Kinetics prediction: Nielsen et al. (2020) described an 
AI framework for modeling particle processes based on 
preexisting mechanistic process knowledge and sensor data 
to estimate underlying process kinetics. Three case studies 
of flocculation, crystallization, and fracture were described 
and modeled for the kinetics of different underlying pro-

cesses such as nucleation, growth, shrinkage, fracture, and 
for agglomeration.

Final precipitate prediction: Hoseinian et al. (2020) 
demonstrated a hybrid neural network–genetic algorithm 
with first principle models for the prediction of ion flotation- 
based Zn(II) removal.

3.5 Mixing
Most processes require homogenous distributions, al-

though on some occasions, controlled inhomogeneities can 
be desirable. Therefore, mixing is an important aspect, also 
due to energetic reasons. In particular, mixing parameters 
should be chosen to not exaggerate energy intake, which 
can cause inefficiencies, excess wear, or product degrada-
tion, etc. In addition to the modeling of the process, control 
modeling and monitoring are highly significant, as mixing 
is, in many processes, a highly influential parameter that 
often requires active and dynamic adaptations or continu-
ous control during the process.

Qualitative and quantitative monitoring: Bowler et 
al. (2020) showed ML-based monitoring of a mixing pro-
cess with ultrasonic sensors in which classification models 
were applied for the general mixing capabilities of materi-
als and regression models for the progress monitoring for 
mixing time.

Predictive real-time digital twins: Khaydarov et al. 
(2020) demonstrated a hybrid surrogate model with 
bubble recognition and online video processing in a 
physical stirred tank reactor for the enhancement of a  
parallel-running AI-based surrogate model for a CFD sim-
ulation, as depicted in Fig. 11. The trained surrogate model 
could be implemented on a near real-time running edge-
node, with online AR displaying the result for a human op-
erator. As resource-efficient real-time modeling with direct 
feedback to human or machine interfaces is a desirable goal 
beyond mixing, the use case is interesting for other unit 
operations or plant operations. Furthermore, the given case 
demonstrates a quick mostly numerical AI-based digital 
twin for the real-time processing of the inner mechanisms 
of a parallel-running process, yet with periodic alignment 
to physical reality via direct measurement feedback (which 
can be a soft-sensor approach).

Mixing additive control prediction: Ittiphalin et al. 
(2017) demonstrated the addition of fat to a mixing process 
of feed pallets for animals. Among others, a backprop-
agation neural network was trained considering mold 
size, total percentage of fat, percentage of additional fat, 
percentage of fibers, and pallet shelf-life as inputs for the 
estimation of additional fat to be added. In order to achieve 
an optimum process for increasing the production rate and 
deteriorating pallet shelf-life with an increased fat content, 
optimal fat quantities can be added during the dynamic 
mixing process.
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3.6 Aggregation
As described in precipitation and stabilization, primary 

particles can aggregate, agglomerate, or flocculate, which 
can be desirable under controlled circumstances. As in 
the previous operations, AI can assist in the prediction of 
suitable conditions and kinetics or the estimation or results. 
In addition to the prediction of specific given processes, it 
can also be used to identify suitable novel pathways within 
large parameter spaces.

Hybrid predictive kinetics modeling: Nielsen et al. 
(2020) described an AI framework for modeling particle 
processes based on preexisting mechanistic process knowl-
edge and sensor data to estimate the underlying process 
kinetic rates of constitutive equations based on state vari-
ables and control actions. Depending on the investigated 
phenomena in the model, kinetic rates included one or 
more of the variables of nucleation, growth, shrinkage, 
agglomeration, and breakage. Three case studies, namely 
flocculation, crystallization, and fracture, were described 
and modeled for the kinetics of different underlying pro-
cesses such as nucleation, growth, shrinkage, fracture, and 
agglomeration.

Aggregation pathway identification: Li J. et al. (2019) 
described the accelerated synthesis of gold nanoclusters 
with AU(III) to Au(I) reduction and subsequent coordina-
tion via thiolate ligands for complexation, considering all 
relevant parameters to identify likely patterns for the suc-
cessful synthesis of nanoclusters using deep learning (DL).

Combined structure and pathway prediction: Wahl 
et al. (2021) demonstrated a ML-based approach to predict 
both the aggregate particles (polyelemental heterostruc-
tures) via colloidal self-assembly, as well as the way in 
which they formed, using a technique called a diffuse map. 
The approach proved capable of predicting many body 
phenomena and long-term assembly dynamics.

3.7 Extrusion
Another significant process in particle technology is 

extrusion. In this process, particles, and eventually, a fluid 
are first conveyed and then mixed. In the second step, the 
compression and shearing of a viscous mass under high 
pressure and temperature take place, then the mass is 
finally pressed through a shape-giving opening. The pa-
rameters are highly interdependent, and the selection of op-
timal operating conditions is usually time-consuming and 
increasingly costly. Consequently, the quality control of the 
extruded material is associated with various challenges, in-
cluding the control of process parameters such as velocity 
and temperature or of the final product quality. Therefore, a 
more intelligent method needs to be developed. To achieve 
this goal, AI methods can be beneficial, in addition to being 
able to close the gap between often used simulations and 
accurate but costly experiments. In the following extrusion 
processes, pure polymers are described as the AI methods 
can be used similarly for particle-filled polymers.

Curing property prediction: Marcos et al. (2007) 
demonstrated the prediction of the extrusion properties 
of rubber, relying on compound composition and mixing 
conditions during extrusion. Despite being applied to 
molten rubber in this case, extrusion is often based on 
granular material, e.g., in many extrusion processes for 
battery production, wherefore the general approach is also 
of interest in the context of particle technology. Online in-
formation about specific curing properties can be predicted 
via integration into the process, eliminating waiting time 
for laboratory results and increasing product traceability.

Velocity control: Martínez-de-Pisón et al. (2010) pre-
sented a dynamic model for extrusion velocity control, 
which was capable of controlling manufacturing processes 
based on previously successful start-ups with data about 
pressure, temperature, and velocity. The complexity of 
this task was due to the open-loop control system and the 
constant alterations inherent to the process.

Fig. 11 Online surrogate modeling of a mixing process via a CFD surrogate model with direct feedback via an AR interface to a human operator 
running in near real time due to AI assistance. Feedback of the physical process was integrated into the approach via machine vision. Reprinted with 
permission from from Ref. (Khaydarov et at., 2020). Copyright 2020 B.V.
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Temperature control: Taur et al. (1995) proposed 
a fuzzy PID temperature controller for the temperature 
control of the extruder cylinder using if-then rules and 
membership functions.

Tsai and Lu (1998) developed a predictive fuzzy PID 
controller with single-loop monitoring for extruder cylin-
der temperature control.

Quality control: Liu X. et al. (2012) proposed dynamic 
gray-box modeling based on a soft-sensor approach to 
control the quality of polymer extrusion. In this article, an 
attempt was made to use a gray box to provide real-time 
monitoring of the quality of the extrudate in order to reduce 
the setup time and improve the operation of the system. 
In this work, a soft-sensor structure was combined with a 
feedback observer to estimate the viscosity and control the 
final quality of the material.

Simulation-experiment translator: Bajimaya et al. 
(2007) used an ANN to predict the process parameters in 
extrusion. Simulation analyses are usually unable to take 
into account the boundary conditions of the manufac-
turing process, which is why their results remain mainly 
theoretical. On the other hand, conducting experiments is 
usually expensive and time-consuming, which is why the 
use of AI methods can reduce the gap between simulation 
and real data. The trained AI algorithm acted as a transfer 
tool to translate the theoretical variables gained from finite 
element method (FEM) simulations such as stress, strain, 
and shearing into realistic measures for extrusion pressure, 
temperature, and velocity.

3.8 Classification
Classification has many applications in particle technol-

ogy that can be performed analytically to determine distri-
butions or properties or as physical separation according 
to the respective properties. There exist many separation 
categories, with some being easier to implement, such as 
the classification of compact particles according to size, 
e.g., via sieving. For other aspects such as morphology or 
composition, sorting can be difficult. In such cases, manual 
human involvement or application-specific hardcoded 
automation is often required, but this can be expensive, 
unreliable, and inflexible and can limit the quantities that 
can be processed. Consequentially, the application of AI is 
a viable alternative in such instances.

Analytical classification with machine vision: 
Gonçalves et al. (2010) demonstrated an ANN-based tech-
nique of analytically classifying microscopic wear parti-
cles. Binarized particle images were obtained, and features 
such as area, perimeter, width, height, diameter, circularity, 
ferret diameter, elongation, and aspect ratio were obtained 
via ImageJ. Supervised classification reached accuracies of 
around 95 percent.

Massarelli et al. (2021) used computer vision and ML 
to analytically (i.e., with no physical separation involved) 

classify and count particles depending on dimensional size 
and morphology. The particles could be classified under 
supervision according to predetermined groups or without 
supervision to act as a measure for sample representative-
ness and in order to identify hidden features.

Physical separation: In addition to mere analytical 
classification, physical sorting can be performed, as 
Kattentidt et al. (2003)  demonstrated, for the sorting of 
bulk solids. In an online operation, AI-based quality control 
was performed with two optical sensors for the separation 
of recycled glass. Distinguishing features were dimen-
sionality, surface area and volume, texture, morphology, 
homogeneity, conductivity, and spectral reflection. Finally, 
a separation unit sorted the bulk material into dedicated 
fractions.

The AI-based sorting of particles, also in the context of 
recycling, has the potential to be a crucial pillar for a circu-
lar economy. For instance, Wilts et al. (2021) demonstrated 
AI-based waste sorting via a robotic arm and a sorting belt 
with a multitude of sensors (metal detector, high-resolution 
RGB camera, NIR sensor, VIS sensor).

Furthermore, Peršak et al. (2020) demonstrated the 
sorting of transparent plastic granulates based on computer 
vision and subsequent pneumatic air separation. The plas-
tic particles had sizes of 2–4 mm, sorting accuracy for 9 
classes equaled 90 percent, and for two classes, it was 100 
percent.

3.9 Characterization and Analysis
In almost all cases, after or during unit operations, the 

characterization of properties and their distribution is 
required. Sometimes, these can easily be gathered, while 
in other cases, directly obtaining the required data can be 
challenging or impossible due to limitations in measure-
ment equipment, physical constraints, accessibility during 
operations, etc. Often, analysis is possible but limited in 
regard to the executable quantity due to the nature of the 
measurement technique or the hardware. In all these cases, 
AI can be a useful technique to use with parallel running 
predictive or surrogate models, as these can be enriched by 
limited physical information, as previously shown in the 
case of mixing (Khaydarov et al., 2020). In addition to use 
in soft sensors, AI and evolutionary approaches can be used 
to enhance measurement results through post-processing or 
to derive mechanical descriptions of the measured proper-
ties and their influencing parameters.

AI as a soft sensor: Reliable predictive models can also 
be used to directly replace measurement, or as additional 
assistance in the context of soft sensors.

An important characterization method for particle break-
age is the particle breakage function, which can be deter-
mined via a breakage tester, as described in Böttcher et al. 
(2021) (see Fig.12).

In the breakage tester, rotational velocity and gap size 
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can be adjusted, while torque and normal force between the 
rollers are measured. Based on GRL for rotational velocity, 
with gap size and initial particle size as input parameters, 
a predictive model was trained for the prediction of power, 
force, and resulting particle size via two fitting parameters. 
Both, the prediction of power and force achieved high 
accuracies, with an R2 in both cases of 0.97.

Sun et al. (2017) successfully trained a three-layer neural 
net for the prediction of electron transfer properties such as 
the Femi energy of silver nanoparticles and successfully 
identified correlations with structural and morphological 
features.

Measurement improvement: Furat et al. (2022) applied 
generative adversarial networks (GANs) to retrospectively 
super-resolve images of particle based Li-ion electrodes 
for the quantification of features such as the identification 
of cracks in aged cathodes. Consequentially, the trade-off 
between resolution and field of view in the SEM imaging 
of bulk-pictures was significantly reduced.

Mechanistic analysis measure modeling: GAs provide 
another AI method that is often used for optimization 
tasks by mimicking the process of evolution involving the 
mutation, selection, and reproduction of system states and 
parameters. Finke et al. (2021) used a GA for the identifi-
cation and optimization of suitable model parameters for a 
viscosity model of nanoparticulate suspensions.

3.10 Other Applications
A method with great potential for future applications is 

a combination of nature-based or mathematical algorithms 
and AI.

Drilling and blasting through hybrid models: One 
possible hybrid approach was introduced by Mojtahedi 
et al. (2019), which was developed for the prediction of 
particle size distribution in mining and is presented below.

Drilling and blasting are the most widely used meth-
ods in mining for rock crushing. In order to describe the 
fragmentation, the ANFIS method was combined with 
the firefly algorithm (FA). By extending a fuzzy inference 
system (FIS) with an artificial neural network (ANN), the 
system becomes self-learning and can solve nonlinear 
complex problems. In addition, the combination of AN-
FIS with the FA provides an ability to determine optimal 
values for complex nonlinear problems. More precisely, 
the FA describes a nature-based algorithm of firefly social 
behavior, where the convergence speed of the algorithm 
is high and the number of iterations for an optimal result 
is low. The objective of the ANFIS-FA was to predict the 
D80 (the 80 percent passing size at which 80 percent of the 
particles are smaller) value for different input parameters 
of the resulting particle distribution, using a data set from 
88 blasting operations at the Shur river dam in Iran. For 
further validation of the predictions, the ANFIS-FA method 
was contrasted with linear multiple regression (LMR) 
methods alongside the test data set.

Six different hybrid models were created, each differing 
in the choice of input parameters used. Each of these mod-
els achieved higher R2 values with a minimum of 0.856 in 

Fig. 12 A predictive model for a breakage tester to characterize the particle breakage function. Successful prediction capabilities were achieved for 
acting normal forces, power intake, and resulting particle size distribution. Further processing can be done for transference into existing breakage 
function models, with AI enabling reduction in the physical measurement effort (original work by author). Left upper picture reprinted with permission 
from Ref. (Böttcher et al., 2021). Copyright 2021 B.V.
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predicting the D80 value than the LMR method, with 0.669 
in relation to the test data set.

In summary, combining AI methods with existing al-
gorithms has been demonstrated to significantly improve 
the accuracy of particle size predictions (Mojtahedi et al., 
2019).

4. AI Surrogate Models
Sophisticated computer simulations are increasingly 

aiding particle technology in all covered domains. De-
pending on the time and length scale, different simulation 
techniques can be applied, such as the Finite Elements 
Method (FEM) for the investigation of the inner structural 
and mechanical behaviors of solid objects, Computer Fluid 
Dynamics (CFD) for the simulation of fluid flows, the 
Discrete Elements Method (DEM) for the investigation 
of the interactions among many particles and boundaries, 
or population balance simulations (PB) for the numerical 
modeling of particle-based processes. The methods can 
be coupled for multi-scale investigations or in CFD and 
DEM to investigate particulate systems within fluids, such 
as air or water. Interaction can be mono- or bidirectional, 
depending on the required accuracy and computational 
demands. Coupled CFD-DEM simulations are often used 
to numerically investigate particles in fluidic environments 
(Li J. and Tao J., 2018; Schrader et al., 2019; Zhu et al., 
2020; Beinert et al., 2018; El-Emam et al., 2019). Such 
simulations are often demanding in terms of time and com-
puting resources, limiting the space, time, or accuracy that 
can be investigated.

Predictive AI systems have the potential for massive sav-
ings in computing power and extensions of the investigable 
parameter space, yet they represent customized solutions 
that need to be performed repeatedly for new use cases, as 
was done for the dry operated vertical mill simulation after 
the modeling of the wet simulation.

More universally applicable AI solutions exist for 
some simulation methods in the form of surrogate mod-
els, although development is still in an early state. 
Calzolari et al., using tensor basis neural networks 
(TBNN) and CNNs (discussed in terms of the vertical 
mill), described CFD surrogate models (see left side of 
Fig. 13), demonstrating the time extrapolation of flow 
fields and AI upscaling based on previously learned 
physical data to derive super-resolved fields for low- 
resolution fields and physics-informed DL turbulence 
model enhancement (Calzolari and Liu, 2021).

For the discrete elements method, the authors (Thon 
and Schilde) are currently working on a surrogate model 
to train small-scale unit cells with particle positions and 
forces from DEM for incorporation in a respective small-
scale unit cell surrogate model for later application on large 
domains. By discretizing the large domain cyclically and 
re-meshing the unit cell grid, the dynamics for larger do-
mains are to be represented by the surrogate model and pre-
dicted as a new initialization state for subsequent iteration. 
The Initial training of output 3D particle positions over 
time is promising, with minuscule errors in individual time 
steps and a mean error of 0.5 percent per spatial dimension 
(0.1 nm error in a 20 × 20 × 20 nm unit cell). 

Fig. 13 Depiction of surrogate models for CFD simulations to quickly get accurate results, which would take unaided CFD significantly longer. On 
the right side, a current approach for a surrogate model for DEM is shown, in which a predictive model of a 3D tesseract is trained for a small-scale unit 
for later iterative inference in a larger discretized domain with remeshing. The left part is a reprint of Calzolari and Liu (2021) under the terms of the 
CC-BY 4.0 license. Copyright: (2021) The Authors, published by Elsevier. (The right part is an original work by the author).
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5. AI-based design and scale-up
In addition to modeling, the optimization or control of 

individual processes such as synthesis, grinding, analy-
sis etc., the design, modeling, and control of plants and 
complex networks as a whole, as well as layout and opti-
mization, including the design of the underlying processes 
and units, is of major economic significance. Using AI for 
design, layout, optimization, or scale-up can lead to signif-
icant savings and improved efficiency.

Other than for the task or unit’s specific applications, 
elaborated on earlier in the publication, adoption of AI in 
particle technology in this respect is still in an early stage. 
However, there are some examples, more advanced exam-
ples, and real-world applications in other fields, with the 
used approaches being transferable to particle technology, 
e.g., the use of GAs for the autonomous design of heat 
exchangers, which can be easily adopted for the design of 
milling geometries.

Generally, two major approaches can be distinguished, 
the design and optimization of dedicated production 
systems, processes, unit operations, plants, and logistics 
infrastructure for dedicated goals or the intelligent dynamic 
identification, connection, and management of suitable 
(potentially decentralized) infrastructure already in exis-
tence.

The former method of dedicated design tasks can be 
used for basic operations or if products will be required in 
the long term and in large quantities, making application- 
specific inflexible yet efficient high-throughput systems a 
suitable option.

With GAs, Wisniewske (2004) demonstrated an optimal 
design of reinforcing fibers within a composite, while Jatti 
et al. (2013) optimized the milling of aluminum alloys. For 
the design of process units, RatnaRaju and Nandi (2013) 
used GAs for the construction of heat exchangers while 
considering pressure drop and effectiveness.

In contrast to evolutionary techniques, Lee X.Y. et 
al. (2019) used deep reinforcement learning for micro- 
fluidic flow sculpturing, finding it to be superior to a GA 
approach. Similarly, with classical AI techniques such 
as neural nets, Sarkar et al. (2019) demonstrated an au-
tonomous design of a compressor rotor and optimization 
through AL.

Specifically, GANs, in which two competing AIs train 
each other, are useful for the design process. In this ap-
proach, a generator learns from training examples in order 
to produce similar results, while a discriminator AI evalu-
ates the results and learns through feedback to improve the 
accuracy of its evaluation. Being mostly known from deep 
fakes, the generation of realistic images, they can also be 
applied to generate solutions for given problems. Via the 
iterative interaction of generator and critique AI, the two 
networks improve each other’s capabilities.

Chen and Fuge (2019) demonstrated GANs for design 

synthesis, the generation of hierarchical designs in con-
junction with generative models. Similarly, Oh et al. (2019) 
applied GANs for the generation of 2D wheels. Nobari et 
al. (2021) demonstrated autonomous design synthesis for 
constrained 3D geometry generation for different purposes 
via deep generative models and constraint GANs.

In addition to the complete execution of the design 
process, AI can be used in a semi-automated manner to 
assist manual design endeavors. For instance, Khan et al. 
(2019) discussed iterative design adjustment in the con-
struction endeavor in a loop with user feedback. Similarly, 
Deshpande and Purwar (2019) demonstrated the solution 
generation of mechanisms and synthesis for abstract inputs.

Raina et al. (2019) applied transfer learning to incor-
porate historical design strategies from past cases into 
AI systems. Combining these approaches in the future, a 
closed loop of adjustment with continued learning based on 
human feedback can be implemented.

Similarly, GA-, ANN-, and GAN-based design or the 
evolution of design strategies can be applied for processes 
or production units in particle technology, such as in the 
design of mill geometries and operating conditions or for 
the morphological features of product particles.

In regard to the second major variant in design, optimi-
zation and scale-up, the intelligent management and inter-
connection of existing infrastructures, units, systems, and 
processes, a key foundation are digital twins, which can be 
predictive AI models, as already discussed in this publica-
tion. Cyber-physical systems, which include sensors, com-
munication, computation, and control elements, are closely 
associated with digital twins as virtual representations of 
physical systems. Ideally, they rely on a digital twin for 
monitoring, control, and autonomous decision-making 
(Lee E.A., 2008; Tao et al., 2019). Together with cloud 
computing, big data, and the internet of things (IoT) as the 
foundation, both cyber physical systems and digital twins, 
which can rely heavily on AI, are important components of 
the concept of smart factories and industry 4.0.

As already discussed, in a fixed production environment, 
management and control are vital for the dynamic inter-
connection and allocation of resources, units, processes, 
or entire plants in a decentralized (potentially global) 
manner while considering the available infrastructure and 
its flexibility, intelligent supply chain management and 
decision-making are of paramount importance. Toorajipour 
et al. (2021) performed a more detailed review of AI 
in supply chain management and successive decision- 
making, focusing on marketing (including sales, pricing, 
segmentation, consumer behavior, decision support, direct 
marketing, industrial marketing, new products, etc.), lo-
gistics (containing container terminal operations, inbound, 
logistics automation, sizing, etc.), production (assembly, 
integration, product driven control, etc.), and the supply 
chain itself (facility location, supplier selection, supply 
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chain network design, risk management, and inventory re-
plenishment), with references to specific examples. Supply 
chain management and autonomous decision making are 
important aspects that mirror, to a large degree, process 
control in a fixed system, although challenges in a dynamic 
decentralized system can strongly outweigh those in a fixed 
system.

In terms of the online monitoring of large connected 
production systems, the company Hosokawa Alpine (2019) 
applies an ML-based platform intelligent software assistant 
(ISA) for the maximization of efficiency and quality.

Regarding the supply chain network design under 
consideration of profit maximization, Zhang et al. (2017) 
demonstrated a competition-based intelligent physarum 
solver.

Wang et al. (2012) demonstrated autonomous collabora-
tion between heterogeneous actors (multi-robotic systems) 
and AI to solve complex formation performance in a dy-
namic environment.

In regard to the dynamics of product life-cycles and 
supply chain networks and the resulting inbound fluctua-
tions, Knoll et al. (2016) demonstrated predictive inbound 
logistics planning.

Kwon et al. (2007) presented an integrated multi-agent 
framework to solve collaboration tasks in supply chain 
management in regard to supply and demand uncertainties.

In cases when human supervision is desired, Kasie et al. 
(2017) demonstrated a decision support system combining 
AI and discrete-event simulations (DES), as well as data-
base management.

Applied to particle technology, the existing production 
sites addressed earlier in this review can be intelligently 
connected in a dynamic, decentralized, self-organizing 
structure based on digital twins and cyber physical sys-
tems. Based on AI market prediction, as well as autono-
mous real-time monitoring and decision making, the cost 
and efficiency benefits of smart factories and industry 4.0 
can be adopted more progressively in the field of particle 
technology.

6. Conclusion
In conclusion, AI techniques are already used in all 

areas of particle technology. Predictive modeling, often the 
foundation for successive AI applications or conventional 
post-processing, is already universally represented for all 
process types, although the degree of adoption varies. AI 
methods or evolutionary approaches, which are often used 
in combination, are furthermore applied for the optimiza-
tion or set up of process control.

AI can perform or assist in scale-up, as trained AI 
models can be transferred between different scales through 
pre-training. In regard to classical simulations such as 
DEM, FEM, or CFD, AI can aid in numerical investigation. 
Surrogate models are increasingly being investigated in 

various fields as quick-to-apply alternatives to classical 
simulations such as DEM for particulate systems. Often, 
the simulation counterpart is used as a training foundation 
for the training of surrogate models. Consequently, through 
surrogate models, the investigation of systems such as large 
stirred media mills with trillions or quadrillions of particles 
or more and their inner workings can be possible, orders 
of magnitudes being larger than what could be done with 
state-of-the-art simulations. Inversely, surrogate models 
can be performed significantly faster than real simulations, 
allowing for real-time or faster numerical investigations 
of parallel-running physical processes or plants, allowing 
for the predictive control of complex milling or reaction 
processes or of entire plants. Since simplifications or ap-
proximations need to be done often as compromises need 
to be made between accuracy and computing performance, 
e.g., simpler contact models or focusing on grinding beads 
without product particles, such simplifications can become 
unnecessary with surrogate models, allowing for greater 
transparency and realism.

Regarding the criticism of AI’s black-box nature, there 
are techniques to increase the transparency of AI models, 
in particular the use of genetic programming (GP) or 
reverse-engineering strategies, to transfer AI models into 
more transparent representations to facilitate, among 
others, the mechanistic modeling endeavor in particle 
technology.

In summary, there are examples in most domains of 
particle technology, although widespread adoption has not 
yet been achieved. Based on the existing examples, ranging 
from proof of principles to successfully applied economic 
adoptions, with the exponential increase in general capa-
bility, AI adoption will be a major determinant of economic 
competitiveness and survivability in this and the following 
decade.

7. Outlook
Looking towards the future, the author sees promising 

areas and ideas to address untapped potential and remain-
ing shortcomings.

In Fig. 14, a possible framework is depicted, extending a 
previously published hybrid modeling approach now called 
hybrid regression evolutionary network (HyREN) (Thon et 
al., 2022b).

1) HyREN: Being marked by the blue square, training 
data from either experiments or experimentally validated 
simulations (e.g., via DEM calibration or the execution and 
comparison of identical mill experiments and simulations) 
are used for parallel hybrid modeling, also called gray-box 
modeling. In this way, the parallel-running black-box AI 
only models the divergence between predefined white-box 
models, e.g., an existing physical or mechanistic model 
from the literature, and only compensates for the white-
box model’s shortcomings, with major tendencies being  
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defined by the transparent and established white-box model.  
Successive GPs can be performed to break down the black-
box model component into more transparent representa-
tions to iteratively extend the white-box model. Depending 
on whether human intervention will be involved, the exten-
sions can be empirical or mechanistic. Based on this as an 
outlook, several additional extensions are proposed, which 
are currently being developed.

2) Genetic reinforcement learning: One shortcoming 
of AI models is usually their large training data require-
ments. The GRL training technique has already addressed 
this shortcoming. Despite GRL’s advantages, unknown 
regions in the parameter space in terms of the available 
training data can still compromise the generalizing capabil-
ities of the model.

3) Active search and request: e.g., the comparison of 
the systematic predictions of independently trained AIs, 
can reveal parameter combinations of uncertainty in order 
to close these gaps with a minimum amount of additional 
data acquisition (via targeted simulations or experiments).

In regard to hybrid modeling and the iterative extension 
of white-box components, additional approaches can in-
crease physical significance.

4) Dimensionality analysis: As shown in green, GP can 
be augmented through dimensionality analysis to ensure 
the mathematical and physical consistency of units.

5) AI-driven regression: Furthermore, initialization 
with suitable equations, derived from AI detection based 
on the (n-dimensional) shape of the data, can facilitate the 

process.
6) AI-driven physics recognition: Furthermore, em-

pirical models can be transferred to mechanistic models 
in a semi-automated manner by generating a large pool 
of equations containing known physical or mechanistic 
equations. Resulting from generations of crossover and 
mutations, and involving tree structures from this equation 
pool, recognition AIs can be trained to later be applied 
to the identification of white-box equations or respective 
fragments in data from real use cases.

7) Digital twins for optimization and control: Based on 
the trained models (black, gray, or white box), subsequent 
techniques such as GA, GP, or AL, etc. can be performed 
and considered to be safe to interact with and quick- 
to-apply virtual process representations (AI-based digital 
twins) for optimization and control.

8) Online Learning: Further development opportunities 
and the application of data-driven methods in process, 
formulation, and material modeling are manifold, such as 
online learning in which AI is constantly running in parallel 
to processes or data banks to update its internal modeling 
and dynamically adapt to changing circumstances (e.g., 
anomalies such as the blocking of particles in a grinding 
process or changes in the product formulation). Similar to 
GAs, ALs allow for the optimization of defined goals.

9) Autonomous AI modularization: Via un- or self- 
supervised learning, the use of modular neural nets or 
dropout, automated identification and the decomposi-
tion of process and production engineering issues into  

Fig. 14 Outlook for a comprehensive modeling system combining classical AI techniques such as neural nets with evolutionary approaches such as 
genetic algorithms and programming in conjunction with hybrid modeling. Integrated optimization and the establishment of control decision trees can 
be generated based on underlying hybrid models acting as digital twins. Furthermore, dimensionality analysis, equations, and physics recognition can 
be added to improve the underlying modeling capabilities and improve transparency and physical reasonability. The middle blue box is a reprint from 
Thon et al. (2021), as are the lower boxes for genetic algorithms and programming (Thon et al., 2022b), both under the terms of the CC-BY 4.0 license. 
Copyright: (2021) The Authors, published by Wiley.
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sub-processes and sub-mechanisms for better (hybrid) 
modeling and control of the entire process chain can be 
achieved. For instance, a complex production plant with 
various sensors and actuators can be autonomously broken 
down into closed unit systems, which can then be intercon-
nected to represent the entire plant, simplifying the model-
ing effort while  increasing the transparency of the model.

10) An Expert Management System for AI: As 
different AI tools (neural nets, evolutionary algorithms, 
Hierarchical Hidden Markov models, etc.) provide varying 
advantages and disadvantages, the best results can usually 
be achieved via the intelligent combination of methods 
either in the form of joint applications or the fusion of 
methods (ensemble methods). In the future, based on a com-
prehensive toolbox of methods, a self-supervised expert- 
management system can be established for the optimal  
allocation and interconnection of ML methods.

Since there exist real-world examples in particle tech-
nology of almost all unit operations in terms of predictive 
modeling and, increasingly, optimization and control 
via AI, the mostly untapped design, scale-up, modeling, 
optimization, control, and monitoring of large, highly con-
nected systems such as entire plants or decentralized pro-
duction facilities are likely to be the next steps in adoption.

11) AI-driven unit and geometry design: Furthermore, 
the design of individual components such as stirrer geom-
etries can be facilitated. That is, the geometry design itself 
can be performed numerically, e.g., via AL or the use of 
GAs along predefined constraints, as can be the optimiza-
tion of process parameters.

12) Surrogate models: Through the use of surrogate 
models, quick iteration and prototyping are possible. For 
process control, AI models can be used as quick-to-apply 
digital twins (predictive/surrogate models) that run faster 
than real time and have the potential to improve automation 
and the autonomous development of sophisticated control 
schemes.

13) Brain-derived AI: Finally, current AI is still loosely 
inspired by biological nerve systems. Recent develop-
ments in neuroscience and the successive adoption of AI, 
specifically in regard to neuroscientific theory about the 
mammalian neocortex, as found in Hawkins et al. (Hole 
and Ahmad, 2021; Hawkins and Ahmad, 2016; Hawkins 
et al., 2017, 2018; Lewis et al., 2019), can allow for more 
general levels of intelligence compared to the currently 
narrow AI. These advancements harbor the potential to 
allow for desired features currently investigated in the 
context of classical AI such as online learning (perma-
nent model update), distributed voting AIs (robustness, 
generalizing capabilities), or reference frames (Hinton, 
2022). This can allow for more general AI systems, which 
can apply and detect learned patterns, strategies, and 
solutions in the context of novel or other types of unit 
operations via analogies. Applied to particle technol-

ogy, being a wide field involved in many industries, the 
autonomous transfer and detection of common patterns 
and solutions can allow for the identification of non- 
obvious solutions, e.g., the use of Michaelis–Menten kinet-
ics for the dispersion of nanoparticles (Schilde et al., 2010).
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Nomenclature
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ASIC Application-specific integrated circuit
BP Backpropagation
BPNN Back propagation neural network
CFD Computer fluid dynamic
CNN Convolutional neural network
DEM Discrete elements method
DL Deep learning
DNN Deep neural network
FA Firefly algorithm
FEM Finite elements method
FIS Fuzzy inference system
GA Genetic (or evolutionary) algorithm
GAM Generalized additive model
GAN Generative adversarial network
GP Genetic programming
GRL Genetic reinforcement learning
IoT Internet of things
LIME Local interpretable model agnostic explorations
LMR Linear multiple regression
LSTM Long short-term memory
MIMO Multiple inputs and multiple outputs
ML Machine learning
ODML On-demand machine learning
PB Population balance
PID Proportional integral derivative (controller)
PLS Partial least-squares regression
PSD Particle size distributions
RVLFN Random vector functional-link network
SEM Scanning electron microscope
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TBNN Tensor basis neural networks
XAI Explainable AI
YOLO You only look once (object detection)
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