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Abstract
In this study, in order to optimize a fabrication process for SiO2/TiO2 composite particles and control their coating 
ratio (CTi), regression models for the coating process were constructed using various machine learning techniques. 
The composite particles with a core (SiO2)/shell (TiO2) structure were synthesized by mechanical stress under various 
fabrication conditions with respect to the supply volume of raw materials (V), addition ratio of TiO2 (rTi), operation 
time (t), rotor rotation speed (S), and temperature (T). Regression models were constructed by the least squares method 
(LSM), principal component regression (PCR), support vector regression (SVR), and the deep neural network (DNN) 
method. The accuracy of the constructed regression models was evaluated using the determination coefficients (R2) 
and the predictive performance was evaluated by comparing the prediction coefficients (Q2). From the perspective 
of the R2 and Q2 values, the DNN regression model was found to be the most suitable model for the present coating 
process. Moreover, the effects of the fabrication parameters on CTi were analyzed using the constructed DNN model. 
The results suggested that the t value was the dominant factor determining CTi of the composite particles, with the 
plot of CTi versus t displaying a clear maximum.
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1. Introduction
Composite particles synthesized by compounding tech-

niques have been extensively utilized in various fields 
(Al-Salihi H.A. et al., 2019; Karger-Kocsis J. et al., 2014; 
Pierpaoli M. et al., 2019). Since powder properties play 
a key role in the suitability for a particular application 
(Kimura T. et al., 2020), selecting the optimal combination 
of particles is crucial for the performance of the composite 
particles (Deki Y. et al., 2018). For example, composite 
particles consisting of oxides, such as SiO2 and TiO2, are 
utilized in cosmetics and ceramics because of their superior 
physical properties including optical and electrical proper-
ties (Adebisi A.A. et al., 2016; Himoto I. et al., 2016). Con-
sequently, it is necessary to control the powder properties 
during the fabrication of composite particles.

In the synthesis of composite particles, compounding by 
mixing and dispersion, which involves convection, shear, 
and diffusion processes, is extensively applied. These 

compounding techniques require a combination of impact, 
compression, and friction to overcome the aggregation 
forces. (Kim K. et al., 2016). In many cases of conventional 
processes using mixers and mechanical compounding ma-
chinery, premixing and compounding in other equipment 
is necessary because the mechanism of mixing of a single 
device is biased toward convection, shear, or diffusion 
(Thongnopkoon T. et al., 2018). Several fabrication meth-
ods for composite particles have been reported, although 
achieving control over the powder properties of the parti-
cles during the fabrication processes remains challenging 
owing to the complex relationships between the powder 
properties and fabrication conditions (Matsuoka Y. et al., 
2021). Hence, it is essential to develop methods of pre-
dicting these complex relationships to control the powder 
properties of the composite particles.

Data with complex correlations are often analyzed by 
statistical and machine learning methods (Kaneko H. and 
Funatsu K., 2015; Wada S. et al., 2021; Zhao Z. et al., 
2018), such as the least-squares method (LSM), principal 
component regression (PCR), and support vector regres-
sion (SVR) (De Backer A. et al., 2021; Tran H. et al., 2018; 
Zhang Z. et al., 2021). In addition, a deep neural network 
(DNN) analysis has proved useful in a variety of fields, 
including agriculture (Cai Y. et al., 2019; Qui Z. et al., 
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2018), environmental studies (Ghatak M.D. and Ghatak A., 
2018; Tanzifi M. et al., 2018), and medicine (Basheer I.A. 
and Hajmeer M., 2000; Horie Y. et al., 2019; Stokes J.M. 
et al., 2020). DNN analysis is one of the typical machine 
learning methods and aims to replicate the neural circuits 
of the human brain by a mathematical model using multiple 
artificial neurons. A DNN learns by adjusting parameters in 
the model and can predict complex correlations (Basheer 
I.A. and Hajmeer M., 2000; Zhang G. et al., 1998).

In previous studies (De Backer A. et al., 2021; Tran H. 
et al., 2018; Zhang Z. et al., 2021), regression models were 
constructed to examine the relationships between several 
explanatory variables and the objective variables using 
various methods, including LSM, PCR, and SVR, and 
their predictive performance was improved by considering 
multiple explanatory variables. For example, Matsuoka et 
al. (Matsuoka Y. et al., 2021) investigated the relationships 
between the operating conditions and the physical proper-
ties of oral solid dosage tablets during a continuous manu-
facturing process using a DNN model, which successfully 
predicted the physical properties of the tablets from the 
operating conditions with high accuracy. In another study, 
regression models were constructed to estimate the volume 
loss of AA7075/Al2O3 composites during wear test at var-
ious operating conditions using the LSM, SVR, and DNN 
methods, and the performance of the machine learning 
was compared with statistical analysis for this challenging 
situation involving complex correlations between the ex-
planatory and objective variables (Aydin F., 2021).

In this study, the optimization of prediction techniques 
for the complex correlation between powder properties 
and fabrication conditions by constructing regression 
models using several methods was investigated. Further-
more, parameters affecting the powder properties of SiO2/
TiO2 composite particles were analyzed with a focus on 
the coating ratio (CTi) of the composite particles. The 
SiO2/TiO2 composite particles were synthesized using a 
powder processing system (NOB-MINI, HOSOKAWA 
Micron Co., Japan). Because of the balanced effects of 
compression, shear, and impact on individual particles, the 
fabrication apparatus used in this study enables particle 
design and particle processing, such as compounding, 
surface modification, and spheronization. To analyze the 
correlations between the fabrication conditions and CTi of 
the SiO2/TiO2 composite particles, the supply volume (V), 
addition ratio of TiO2 (rTi), operation time (t), rotor rotation 
speed (S), and temperature (T) were varied. On the basis of 
the experimentally determined CTi values of the composite 
particles prepared under various fabrication conditions, 
regression models for CTi of the composite particles were 
obtained from the machine learning methods. Furthermore, 
the optimized models were used to predict CTi values of the 
composite particles under various fabrication conditions.

2.	 Experimental and construction methods 
for regression models

2.1 Materials and experimental procedure
The composite particles were prepared from SiO2 (MT-

150W, Tayca Co., Japan), as the core particle and TiO2 
(Silsic T-1 (S-1), Yamamori Tsuchimoto Inc., Japan) as the 
shell particle. The SiO2 and TiO2 particles were supplied 
to the experimental apparatus (NOB-MINI, HOSOKAWA 
Micron Co., Japan). The supply volume of the raw materi-
als (V) and the addition ratio of TiO2 (rTi) were varied in the 
ranges of 25–125 mL and 5.0–15.0 wt%, respectively. The 
operation time (t) was set to 1–15 min. The rotation speed 
(S) and temperature (T) were set to 2,200–5,700 min–1 and 
295–319 K, respectively. Under all experimental condi-
tions, the electric current was maintained at constant value 
of 3.5 A. In total, the SiO2/TiO2 composite particles were 
synthesized under 29 sets of experimental conditions, as 
summarized in Table 1. The surface morphology of the 
SiO2/TiO2 composite particles was examined by scanning 
electron microscopy (SEM; SU3500 II; Hitachi High-Tech 
Science Co., Japan), and the Si and Ti distributions were 
measured using an energy-dispersive X-ray spectrometer 
(EDS; Ultim Max, Oxford Instruments Co., Japan) con-
nected to the SEM. The mapping time was set at approx-
imately 120 s. The coating ratio (CTi) of the composite 
particles was calculated according to Eqn. (1) from the 
integrated areas of Si (SSi) and Ti (STi) in the elemental 
mapping images by using imaging software (WinROOF; 
Mitani Corp., Japan):
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2.2 Construction of regression model
The regression models were constructed as described in 

Sections 2.2.1–2.2.4. The fabrication parameters (V, rTi, t, 
S, and T) were employed as the explanatory variables to 
serve as the input values. CTi was chosen as the objective 
variable to serve as the output value. The 29 samples 
were split into training to construct the regression mod-
els (21 samples) and test data to evaluate the predictive 
performance of the constructed models (8 samples). The 
input and output values (z) were auto-scaled by following 

Table 1  Summary of fabrication conditions for the SiO2/TiO2 composite 
particles.

Experimental condition

Supply volume (V) [mL] 25–125

Addition ratio of Ti (rTi) [wt%] 5.0–15.0

Operation time (t) [min] 1–15

Rotation speed (S) [min–1] 2,200–5,700

Temperature (T) [K] 295–319
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Eqn (2):
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where z′ denotes the auto-scaled value, and μ and σ repre-
sent the mean and standard deviation of each explanatory 
variable, respectively.

The determination coefficient (R2) was used to evaluate 
the accuracy of the regression models constructed from 
the training data. The predictive performance of the con-
structed models was assessed by calculating the predictive 
coefficient (Q2) using the test data. The root mean square 
error (RMSE) for each model was also calculated. The 
formulas used to calculate the R2, Q2, and RMSE are given 
in Eqns. (3)–(5):
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where yi, yi
calc., and yi

pred. represent the experimental value, 
the calculated value using the training data, and the pre-
dicted value using the test data, respectively, the subscript 
i denotes the i-th sample, and ymean is the average of the 
experimental values.

The R2 value indicates the accuracy of model construc-
tion because it expresses the degree of agreement between 
the experimental values and the calculated values when 
training data are substituted into the models constructed 
from training data. Meanwhile, the Q2 value reflects the 
degree of agreement between the experimental values and 
the predicted values when test data are substituted into 
the models constructed from training data. The maximum 
value for both R2 and Q2 is 1.0, and values closer to 1.0 
indicate a higher quality model. The RMSE has a positive 
value and is used to evaluate errors in the numerical pre-
diction, where a smaller value indicates superior predictive 
performance (Barrasso D. et al., 2015).

2.2.1 Least-squares method (LSM)
LSM modeling is a construction method that involves 

determining the coefficients (βLSM) that minimize the  
sum-of-squares error (SLSM) between calculated values 
(ycalc.) and experimental values (y). When the numbers of 
samples and explanatory variables are m and n, respec-
tively, the vector of error (εLSM), βLSM, y, and matrix of 
explanatory variables (X) can be expressed as shown in 
Eqns. (6)–(9):
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Furthermore, the ycalc. and y vectors are given by Eqns. (10) 
and (11), respectively:

 = X
calc.

LSM
y β   

 

(10) 

 

 

 

  

	 (10)
=  + X

LSM LSM
y β ε   

 

(11) 

 

 

 

  

	 (11)

Because smaller errors between the ycalc. and y vectors were 
desired, the βLSM vector minimizing the SLSM matrix, which 
is determined by the square sum of the εLSM vector, was 
sought by partial differentiation of Eqn. (11), to afford the 
relationship shown in Eqn. (12):
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Furthermore, when the inverse matrix of the XTX matrix 
was multiplied from the left of both sides of Eqn. (12), 
the βLSM vector was optimized as shown in Eqn. (13), thus 
constructing the LSM model:
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For simple relationships, such as linear and quadratic 
functions consisting of a small number of parameters 
serving as explanatory variables, the LSM is a suitable 
method. Because the order of the explanatory variables was 
set to 1, the LSM model constructed in this study is a liner 
regression.

2.2.2 Principal component regression (PCR)
PCR modeling is a construction method in which ex-

planatory variables are transformed into principal compo-
nents that are uncorrelated with each other. The algorithm 
for PCR model construction consists of the following two 
steps (Hotelling H., 1957).

In the first step, principal component analysis (PCA) 
is conducted. When the score vector (tPCR) is defined as 
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a linear combination of the X matrix, the tPCR vector is 
obtained as described by Eqn. (14):

 = X
PCR PCR
t p   
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where pPCR is the weight of the linear combination, which 
is referred to as loading.

Because PCA is performed by maximization of the 
score, the sum-of-squares score (SPCA) is maximized by us-
ing the Lagrange multiplier (GPCR) expressed in Eqn. (15):
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where j represents the number of explanatory variables. n is 
the number of solutions of the equation represented by the 
λ value. The tPCR vector with the n-th largest variance of λ 
is defined as the n-th principal component, and the princi-
pal component matrix (T) is given by Eqn. (16):
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The PCR model was constructed by adopting the T 
matrix as the explanatory variables in a similar manner as 
described for LSM in Section 2.2.1, and the relationship 
between the output variables and the feature components 
was optimized by varying the number of principal compo-
nents (NP.C.) within the range of 1–5.

For processes with a correlation between the explana-
tory variables, the PCR method is considered the optimal 
selection because the impact of explanatory variables with 
dependent relationships on the accuracy of the regression 
model is reduced.

2.2.3 Support vector regression (SVR)
An SVR model is constructed using a support vector 

machine (SVM) for regression analysis. In SVR modeling, 
a kernel trick along with SVM is applied to construct non-
linear models. The original form of the SVR minimizes the 
matrix (SSVR) shown in Eqn. (17), which is related to the 
vectors of error and coefficient in SVR:
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where f and w denote the SVR model and a weight vector, 
respectively, ε is a threshold, C is a penalty term that 
controls the trade-off between the model complexity and 
training errors, and N is the number of training data. The 
second term of Eqn. (17) is the ε-insensitive loss function, 
as defined in Eqn. (18):
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Minimization of Eqn. (17) affords a regression model 
with a satisfactory balance between generalization capabil-
ity and ability to adapt to training data. When an x vector is 
inputted, a y value is predicted by Eqn. (19):
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where K is a kernel function, and uSVR is a constant. As 
the kernel function for this study, the radial basis function 
kernel given by Eqn. (20) was adopted:
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where γ represents a turning parameter for controlling the 
width of the kernel function, and αi and αi* in Eqn. (19) 
are obtained from Eqns. (17) and (18) by minimizing the 
Lagrange multiplier (GSVR), as expressed in Eqn. (21):
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and the αi and αi* values are subject to
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and Kij in Eqn. (21) is
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In SVR modeling, the hyperparameters (C, ε, and γ val-
ues) have to be set beforehand. The hyperparameters were 
selected by a comprehensive grid search (Kaneko H. and 
Funatsu K. et al., 2013).

The SVR method is suitable when it is necessary to 
construct a regression model to predict processes involving 
nonlinearities and negligible error ranges.

2.2.4 Deep neural network (DNN)
A neural network (NN) model is constructed by optimiz-

ing the hyperparameters, such as the numbers of hidden 
layers (NH.L.) and neurons (NNeur.), the activation function, 
and the number of learning times (NL.T.). An NN with an 
NH.L greater than two is referred to as a DNN. In this study, 
the NH.L. and NNeur. values were each varied in the range of 
1–10. As the activation functions, the sigmoid function, 
tanh function, and rectified linear unit (ReLU) function 
were compared. The sigmoid function has a long history 
as an activation function for NN models. The tanh function 
has been reported to learn faster than the sigmoid function 
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(Ismail H.Y. et al., 2019; Shirazian S. et al., 2017). In recent 
years, the ReLU function has seen increasing use because 
of several advantages such as reduced gradient vanishing 
and faster calculation (Roggo Y. et al., 2020). The sigmoid 
function, tanh function, and ReLU function are expressed 
in Eqns. (25), (26), and (27), respectively:
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In all cases, the stochastic gradient descent method was 
adopted as the optimization method. NL.T. was varied in the 
range of 30–3,500. The hyperparameters are summarized 
in Table 2.

For systems in which the explanatory variables and ob-
jective variables are intricately related, the DNN method is 
an appropriate selection.

3. Results and discussion
3.1 Fabrication of SiO2/TiO2 composite particles

To investigate the effects of the fabrication conditions 
on CTi of the SiO2/TiO2 composite particles, the particles 
were synthesized under 29 sets of conditions by varying the 
values of V (25–125 mL), rTi (5.0–15.0 wt%), t (1–15 min), 
S (2,200–5,700 min–1), and T (295–319 K). V, rTi, t, S, and 
T were set to include the maximum and minimum values 
within the operable range of experimental manipulations. 
The SEM and EDS images of the SiO2/TiO2 composite 
particles for t values of 1 and 10 min are shown in Fig. 1 
to demonstrate the surface morphology and the state of the 
TiO2 coating on the SiO2 particles. The V and rTi values 
were 25 mL and 5.0 wt%, respectively. The S and T values 
were varied with an increase in the t value. From the EDS 
observations, the CTi values of the composite particles were 
calculated using Eqn. (1). The data obtained from the fab-
rication experiments are listed in Table 3. In addition, the 
data subjected to auto-scaling using Eqn. (2) are listed in 
Table 4. During the construction of the regression models 
using the machine learning methods, data from 21 of the 
fabrication experiments were used as training data. The 
data from the remaining eight fabrication experiments were 
used as test data to evaluate the predictive performance of 
the constructed models.

3.2	Model construction using machine learning 
methods

The regression models were constructed using four 
machine learning methods, namely, LSM, PCR, SVR, and 
DNN. Regression analysis was performed to predict CTi of 
the SiO2/TiO2 composite particles depending on the values 
of V (25–125 mL), rTi (5.0–15.0 wt%), t (1–15 min), S 
(2,200–5,700 min–1), and T (295–319 K), which were input 
as explanatory variables. CTi of the composite particles was 
set as the objective variable to serve as the output value. 
The accuracy of the constructed regression models with 

Table 2  Summary of the hyperparameter ranges used to optimize the 
DNN method.

Parameter

Number of hidden layers (NH.L.) [-] 1–10

Number of neurons (NNeur.) [-] 1–10

Activation function Sigmoid
Hyperbolic tangent
Rectified linear unit

Loss function Mean square error

Optimization method Stochastic gradient 
descent

Learning times (NL.T.) [-] 30–3,500

Si Ti

Si Ti

25 µm

25 µm

t = 1 min

t = 10 min

Fig. 1  SEM and EDS images of the SiO2/TiO2 composite particles obtained at t values of 1 min and 10 min.



241

Taichi Kimura et al. / KONA Powder and Particle Journal No. 40 (2023) 236–249

respect to the training data was evaluated by calculating the 
R2 values according to Eqn. (3), and the predictive perfor-
mances of the constructed models with respect to the test 
data were compared using the Q2 values calculated from 
Eqn. (4). The errors of the regression models were evalu-
ated by calculating the RMSE values according to Eqn. (5).

3.2.1 Construction of the LSM model
The LSM model represents the relationship between the 

explanatory variables and objective variable (Stojanovic B. 
et al., 2016). When the order of the explanatory variables 
is 1, as in this study, the relationship derived by the LSM is 
linear. Thus, the regression model constructed by the LSM 
according to Eqns. (6)–(13) is expressed in Eqn. (28):

Ti Ti
' = 0.0669 '  + 0.616 ' + 0.0215 '  + 0.0532 '  + 0.242 'C V r t S T   

 

(28) 

 

 

  

Ti Ti
' = 0.0669 '  + 0.616 ' + 0.0215 '  + 0.0532 '  + 0.242 'C V r t S T   

 

(28) 

 

 

  

	 (28)

where V′, rTi′, t′, S′, and T′ denote the auto-scaled values 
of each fabrication parameter and CTi′ is the auto-scaled 
value of CTi of the SiO2/TiO2 composite particles. Hence 
the coefficients in Eqn. (28) reflect the influence of the cor-
responding parameter on CTi of the composite particles. All 
of the coefficients were positive, indicating that increasing 
the value of each fabrication parameter increased CTi of the 
composite particles. Furthermore, the contribution of each 
parameter to CTi of the composite particles was calculated 
by comparing the absolute values of the coefficients. The 
contributions of the parameters decreased in the follow-
ing order: rTi (61.6 %) > T (24.2 %) > V (6.69 %) > S 

Table 3  Experimental data for the relationship between the fabrication conditions and CTi of the composite particles.

Run V [mL] rTi [wt%] t [min] S [min–1] T [K] CTi [%]

1 25 5.0 1 5,500 295 34.6

2 25 5.0 3 5,600 316 57.1

3 25 5.0 5 5,500 308 35.2

4 25 5.0 10 5,600 317 40.5

5 25 5.0 15 5,700 317 41.0

6 50 5.0 10 3,500 305 44.5

7 50 5.0 15 3,500 306 35.5

8 100 5.0 10 2,500 302 37.1

9 100 5.0 15 2,500 303 45.7

10 50 10.0 10 3,700 307 39.5

11 50 10.0 15 3,700 308 42.5

12 100 10.0 10 2,600 303 46.7

13 100 10.0 15 2,600 304 45.1

14 75 5.0 10 2,800 304 52.7

15 75 5.0 15 2,800 304 36.2

16 125 5.0 10 2,200 301 61.5

17 125 5.0 15 2,200 301 40.0

18 100 5.0 3 2,500 310 34.7

19 100 5.0 5 2,500 313 37.6

20 100 5.0 10 2,500 315 39.6

21 100 10.0 3 2,600 312 43.6

22 100 10.0 5 2,600 315 53.1

23 100 10.0 10 2,600 316 53.0

24 100 15.0 3 2,800 315 49.3

25 100 15.0 5 2,800 317 57.2

26 100 15.0 10 2,700 319 63.9

27 50 15.0 3 3,800 319 59.8

28 50 15.0 5 3,800 315 52.1

29 50 15.0 10 3,800 316 63.8
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(5.32 %) > t (2.15 %).
The relationship between the actual CTi values obtained 

from the experimental data and the calculated values 
obtained from the LSM regression model is presented in 
Fig. 2. The input values were 0.617 and 5.99 %, respec-
tively. In general, the accuracy of a constructed regression 
model increases as the R2 value approaches 1.0 and the 
RMSE value decreases. The low R2 value was attributed to 
the features of LSM.

The correlation represented by the LSM is a linear vari-
ation of CTi of the composite particles with respect to five 
fabrication parameters (Arioli M. and Gratton S., 2012; 
Zhang Y. and Fearn T., 2015). Thus, when the correlation 
between the fabrication parameters and CTi of the compos-
ite particles is not linear, this nonlinear relationship cannot 

Table 4  Auto-scaled data for the relationship between the fabrication conditions and CTi of the composite particles.

Run V [mL] rTi [wt%] t [min] S [min–1] T [K] CTi [%]

1 –1.55 –0.82 –1.74 1.91 –2.24 –1.28

2 –1.55 –0.82 –1.30 2.00 0.96 1.18

3 –1.55 –0.82 –0.85 1.91 –0.34 –1.21

4 –1.55 –0.82 0.26 2.00 1.05 –0.63

5 –1.55 –0.82 1.37 2.08 1.07 –0.58

6 –0.78 –0.82 0.26 0.12 –0.74 –0.20

7 –0.78 –0.82 1.37 0.12 –0.52 –1.18

8 0.78 –0.82 0.26 –0.77 –1.20 –1.01

9 0.78 –0.82 1.37 –0.77 –1.10 –0.07

10 –0.78 0.43 0.26 0.30 –0.46 –0.75

11 –0.78 0.43 1.37 0.30 –0.20 –0.42

12 0.78 0.43 0.26 –0.68 –1.06 0.05

13 0.78 0.43 1.37 –0.68 –0.86 –0.13

14 0.00 –0.82 0.26 –0.50 –0.89 0.70

15 0.00 –0.82 1.37 –0.50 –0.86 –1.11

16 1.55 –0.82 0.26 –1.04 –1.32 1.66

17 1.55 –0.82 1.37 –1.04 –1.30 –0.69

18 0.78 –0.82 –1.30 –0.77 –0.02 –1.27

19 0.78 –0.82 –0.85 –0.77 0.43 –0.95

20 0.78 –0.82 0.26 –0.77 0.84 –0.74

21 0.78 0.43 –1.30 –0.68 0.41 –0.30

22 0.78 0.43 –0.85 –0.68 0.79 0.74

23 0.78 0.43 0.26 –0.68 0.98 0.73

24 0.78 1.68 –1.30 –0.50 0.76 0.33

25 0.78 1.68 –0.85 –0.50 1.16 1.19

26 0.78 1.68 0.26 –0.59 1.37 1.92

27 –0.78 1.68 –1.30 0.39 1.41 1.47

28 –0.78 1.68 –0.85 0.39 0.84 0.64

29 –0.78 1.68 0.26 0.39 1.02 1.91
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Fig. 2  Relationship between the actual and predicted CTi values for the 
LSM regression model.
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be adequately expressed by a regression model based on 
the LSM (Arioli M. and Gratton S., 2012; Zhang Y. and 
Fearn T., 2015). Moreover, if the fabrication parameters 
are highly related to each other, the coefficients in Eqn. (28) 
could be anomalous owing to instability in the analytical 
calculations and the inaccuracy of the regression equation 
(Arioli M. and Gratton S., 2012; Zhang Y. and Fearn T., 
2015).

3.2.2 Construction of the PCR model
In an effort to deal with the inaccuracy and instability 

of the regression model due to the correlation between 
the fabrication parameters as described in Section 3.2.1, 
the parameters were converted to principal components 
uncorrelated with each other by using PCA as expressed 
in Eqns. (14) and (15). Because the fabrication parameters 
highly related to each other were removed in advance, this 
allowed for prediction of CTi of the composite particles by a 
combination of fabrication parameters with low correlation 
(El Ghaziri A. and Qannari E.M., 2015).

The number of principal components (NP.C.) was varied 
within the range of 1–5, and the relationship between the 
actual CTi values obtained from the experimental data and 
the calculated values obtained from the PCR regression 
models for different NP.C. values are presented in Fig. 3. 
The R2 values for each regression model are also indicated. 
When the data points are closer to the dotted line of y = x in 
the plots, the R2 values for the PCR regression models ap-
proach 1.0. Because the R2 values increased with increas-
ing NP.C., all five of principal components were applied to 
the construction of the PCR regression model.

The PCR regression model constructed with NP.C. of 5 is 
expressed in Eqn. (29):

Ti PCR,1 PCR,2 PCR,3 PCR,4 PCR,5
 = 0.635  + 0.249  + 0.0690  + 0.0549  + 0.0221C t t t t t   

 

(29) 

Ti PCR,1 PCR,2 PCR,3 PCR,4 PCR,5
 = 0.635  + 0.249  + 0.0690  + 0.0549  + 0.0221C t t t t t   

 

(29) 

	 (29)

where tPCR,i represents the i-th principal component ob-
tained by PCA. The effects of the principal components 
on CTi of the composite particles are expressed by each 
coefficient. The obtained R2 and RMSE values were 0.617 
and 5.99 %, respectively. The fact that all of the principal 
components were applied to the construction of the regres-
sion model implies that the correlation between each fab-
rication parameter prior to PCR processing was not strong 
(El Ghaziri A. and Qannari E.M., 2015).

When all of the principal components were used to con-
struct the regression model, the values calculated from the 
PCR regression model were identical to those calculated 
from the LSM model, because the application of the last 
principal component means that any effect of the fabrica-
tion parameters was not removed. Hence, the contribution 
of any correlation between the fabrication parameters to 
the low accuracy of the LSM regression model discussed 
in Section 3.2.1 was small. Thus, in an attempt to improve 
the accuracy of the regression models, we next considered 
the possibility of a nonlinear correlation between the  
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Fig. 3  Actual and predicted CTi values for the PCR regression model with various NP.C. values.

Table 5  Hyperparameters used in the SVR regression model.

C 2–5, 2–4, …, 29, 210 16 candidates

ε 2–15, 2–14, …, 2–1, 20 16 candidates

γ 2–20, 2–19, …, 29, 210 31 candidates
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fabrication parameters and CTi of the composite particles.

3.2.3 Construction of SVR model
To consider a nonlinear correlation between the fabrica-

tion parameters and CTi of the composite particles, a regres-
sion model was constructed using SVR according to Eqns. 
(17)–(24). Regression models using SVR are constructed 
by minimizing the structural risk. The hyperparameters (C, 
ε, and γ) of the SVR model were optimized by adapting the 
comprehensive combination from the candidates listed in 
Table 5 by exploring hyperparameters with maximum R2 
values in verification results. The C, ε, and γ values in the 
optimized SVR model were 2–5, 20, and 2–2, respectively.

The relationship between the actual CTi values obtained 
from the experimental data and the calculated values ob-
tained from the SVR regression model is shown in Fig. 4. 
The R2 and RMSE values were 0.591 and 5.80 %, respec-
tively. The former value is slightly lower than that obtained 
for the LSM model (0.617), indicating a lower accuracy. In 
contrast, the RMSE value was slightly smaller for the SVR 
model, indicating a high accuracy.

This comparison based on the R2 and RMSE values sug-
gests that the SVR and LSM models had similar accuracy. 
Thus, under the conditions of this study, consideration 

of the possibility of a nonlinear correlation between the 
fabrication parameters and CTi of the composite particles 
resulted in little change in the accuracy of the regression 
model. Therefore, we next considered the possibility of 
more complex correlations between the fabrication param-
eters and CTi of the composite particles.

3.2.4 Construction of DNN model
To consider more complex correlations between the 

fabrication parameters and CTi of the composite particles, 
a regression model was constructed using a DNN. For 
this model, the hyperparameters (NH.L., NNeur., activation 
function and NL.T.) were optimized by exploring which 
hyperparameters afford the highest R2 values in the verifi-
cation results.

The variation of the R2 values with NH.L., NNeur., and 
NL.T. is plotted in Fig. 5. In the case of NH.L., as shown in 
Fig. 5a), the R2 values were almost constant for NH.L. values 
in the ranges of 1–5 layers and 6–10 layers but increased 
slightly when NH.L. was increased from 5 layers to 6 layers. 
This increase in the R2 values with an increase in NH.L. from 
5 layers to 6 layers is caused by improved fit of the relation 
between the fabrication parameters and CTi of the compos-
ite particles. In the case of NNeur., as shown in Fig. 5b), the 
R2 values tended to increase with increasing NNeur. in the 
range of 1–6 neurons, after which the R2 values remained 
almost constant irrespective of NNeur.. This increase in the 
R2 values with increasing NNeur. in the range of 1–6 neurons 
is caused by improved fit of the relation between the fabri-
cation parameters and CTi of the composite particles. The 
minimal variation of the R2 values in the NNeur. range of 
6–10 neurons was attributable to the sufficiently good fit at 
the NNeur. of 6 neurons. Finally, NL.T. was varied in the range 
of 30–3,500 times. As shown in Fig. 5c), the R2 values rap-
idly increased as NL.T. was increased from 30 to 700 times. 
Then, as NL.T. was increased from 700 to 1,500 times, the 
R2 values increased more gradually. At NL.T. values above 
1,500, the R2 values remained almost constant irrespec-
tive of NL.T.. Comparison of various activation functions 
revealed that the tanh afforded the highest R2 value, as  
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Fig. 4  Relationship between the actual and predicted CTi values for the 
SVR regression model.
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summarized in Table 6. Hence, the optimized hyperparam-
eters for the DNN regression model were an NH.L. of six 
layers, an NNeur. of six neurons, an NL.T. of 1,500 times, and 
a tanh activation function.

The relationship between the actual CTi values obtained 
from the experimental data and the calculated values 
obtained from the DNN regression model is plotted in 
Fig. 6. The R2 and RMSE values were 0.941 and 2.19 %, 
respectively. Comparison of the results obtained for the 
DNN, LSM, and SVR regression models revealed that the 
DNN model displayed the highest accuracy, as indicated by 
its high R2 value and low RMSE value.

3.3 Comparison of constructed models
The LSM, PCR, SVR, and DNN regression models were 

used to predict CTi of the SiO2/TiO2 composite particles 
under various fabrication conditions based on the test data. 
Moreover, the predictive performances of the constructed 
models were evaluated by comparison of their Q2-values.

The relationship between the actual CTi values obtained 
from the experimental data and the calculated values 
obtained from the LSM, SVR, and DNN models for the 
training data are plotted in Fig. 7. Furthermore, to verify 
the predictive performances of the constructed models, 
the relationships between the actual CTi values obtained 
from the experimental data and the predicted values ob-
tained from the three models for the test data are shown 
in Fig. 8. The results for the PCR regression model are 
excluded from these plots because they were identical to 
these obtained from the LSM model. The horizontal and 
vertical axes show the actual values obtained from the 
experimental data and the predicted values calculated from 
the training data or test data, respectively. The R2 and Q2 
values become closer to 1.0 as the data points approach the 
dotted line of y = x in the plots. The R2 and Q2 values for 
each regression model are summarized in Table 7, along 
with the RMSE values for the training data (RMSEtrain) and 
test data (RMSEtest).

Comparison of the R2 values for the three regression 
models revealed that the DNN model had the highest 
accuracy. Similarly, the DNN model displayed the highest 
Q2 value, indicating the best predictive performance. For 

Table 6  Relationship between the R2 values and activation functions for 
optimizing the DNN regression model.

Activation function R2 [-]

Sigmoid 0.0294

tanh 0.596

ReLU 0.152
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Fig. 6  Relationship between the actual and predicted CTi values for the 
DNN regression model.
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Fig. 8  Comparison of the predictive performance of the various re-
gression models by Q2 values based on the test data.

Table 7  Summary of the R2, Q2, and RMSE values for the various 
regression models.

R2 [-] RMSEtrain [%] Q2 [-] RMSEtest [%]

LSM 0.617 5.99 –0.510 9.28

SVR 0.591 5.80 0.280 7.97

DNN 0.941 2.19 0.767 3.26



246

Taichi Kimura et al. / KONA Powder and Particle Journal No. 40 (2023) 236–249

a regression model with high accuracy and predictive per-
formance, higher R2 and Q2 values are required (Gurgenc 
T. et al., 2020). The high R2 and Q2 values of 0.941 and 
0.767 obtained for the DNN regression model in this study 
demonstrate the successful construction of a regression 
model with high accuracy and predictive performance 
for estimating CTi of SiO2/TiO2 composite particles. The 
RMSE values for the training data and test data were 
2.19 % and 3.26 %, respectively. The average CTi of the 
SiO2/TiO2 composite particles in the experimental data was 
46.3 %. In comparison, the RMSE values for the training 
and test data were sufficiently small. Thus, the construction 
of a regression model for predicting CTi of SiO2/TiO2 com-
posite particles under various fabrication conditions was 
successfully realized by using the DNN method.

The DNN regression model displayed the highest accu-
racy in this study because the DNN method considers more 
complex correlations between explanatory variables and 
objective variables, including nonlinearities, by varying 
NH.L. and NNeur.. The LSM regression model attempts to 
predict the CTi values by calculating a formula based on 
simple relationships involving the explanatory variables. 
Meanwhile, the PCR regression model has similar features 
to the LSM model because the main difference between the 
two methods is the replacement of explanatory valuables 
with principal components. The SVR regression model 
is constructed by using explanatory variables converted 
to support vectors by processing with kernel functions. 
Because the support vectors of SVR models are used in the 
same manner as the principal components of PCR models, 
SVR models possess similar characteristics to LSM and 
PCR models. Therefore, the constructed SVR regression 
model also predicted the CTi values from a calculation for-
mula involving only simple relationships. In contrast, the 
application of the DNN method to construct a regression 
model leads to predictions based on complex correlations 
between the explanatory variables and objective variables 
because of the numerous hidden layers and neurons inher-
ent to this approach.

3.4	Analyzing the effects of fabrication conditions 
on CTi of SiO2/TiO2 composite particles by the 
DNN regression model

The DNN regression model was applied to analyzed the 
relationship between the fabrication conditions and CTi of 
the SiO2/TiO2 composite particles. The application range of 
the DNN regression model with respect to the five fabrica-
tion parameters was V = 25–125 mL, rTi = 5.0–15.0 wt%, 
t = 1–15 min, S = 2,200–5,700 min–1, and T = 295–320 K. 
Each fabrication parameter serving as an input value was 
divided into 20 points over the corresponding range, and 
CTi of the SiO2/TiO2 composite particles was predicted 
using the DNN regression model.

The calculated effects of the fabrication parameters on 

CTi of the SiO2/TiO2 composite particles are plotted in 
Fig. 9. Comparison of the resulting curves revealed that 
the maximum gradients decreased in the following order: 
t > T > V > rTi > S. Because a higher gradient indicates a 
larger influence of the fabrication parameter on CTi of the 
composite particles, these results suggest that the effects 
of the fabrication parameters on CTi decrease in the same 
order. The V, rTi, t, S and T values under the base condition 
when varying each parameter were 100 mL, 5.0 wt%, 
5 min, 2,500 min–1, and 303 K, respectively.

The plot of CTi versus t revealed a clear maximum. CTi of 
the composite particles initially increased with increasing t 
owing to the gradual coating of TiO2 onto SiO2 over time. 
However, at higher t values, CTi of the composite particles 
decreased as a result of exfoliation of the surface coating.

Upon varying T, CTi of the composite particles mark-
edly decreased with increasing T in the low-T range then 
remained almost constant with increasing T in the high T 
range. These findings suggest that lower T values are ben-
eficial for enhancing CTi of SiO2/TiO2 composite particles.

The variation of V initially had little effect on CTi of the 
composite particles, which remained almost constant with 
increasing V in the low-V range. At higher values of V, CTi 
of the composite particles decreased with increasing V, 
which was ascribed to a decrease in the contact frequency 
per single particle.

Examining of the relationship between rTi and CTi of the 
composite particles revealed that CTi slightly decreased 
with increasing rTi at lower rTi values. However, at higher 
rTi values, CTi increased with increasing rTi, which was 
attributed to the increased proportion of TiO2 particles with 
respect to SiO2.

Finally, upon increasing S, CTi of the composite particles 
slightly increased. This was ascribed to the progress of 
coating TiO2 onto SiO2.
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Fig. 9  Calculated effects of the fabrication parameters on CTi of the 
composite particles.
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4. Conclusion
In this study, SiO2/TiO2 composite particles with differ-

ent CTi values were synthesized under various conditions 
(V, rTi, t, S, and T). To optimize the fabrication process of 
SiO2/TiO2 composite particles, regression models were 
constructed to predict CTi of the composite particles using 
the LSM, PCR, SVR, and DNN approaches. Furthermore, 
the regression model with the highest accuracy and pre-
dictive performance was employed to analyze the effects 
of the fabrication parameters on CTi of the SiO2/TiO2 
coated composite particles. The obtained results can be 
summarized as follows:
1)	 SiO2/TiO2 composite particles were fabricated by coat-

ing TiO2 onto SiO2 at various V, rTi, t, S, and T values.
2)	 Comparison of the constructed regression models with 

respect to the training data revealed that the DNN re-
gression model displayed the highest accuracy.

3)	 Comparison of the constructed regression models with 
respect to the test data indicated that the DNN regres-
sion model exhibited the best predictive performance.

4)	 Analysis of the effects of the fabrication parameters 
on CTi of the SiO2/TiO2 composite particles using the 
DNN regression model revealed that t was the most 
influential factor governing CTi of the SiO2/TiO2 com-
posite particles.
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