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Abstract
The aim of this theoretical investigation is to seek any similarities between the Austin model and the Kotake–Kanda 
(KK) model for the specific breakage rate function in the population balance model (PBM) used for tumbling ball 
milling and assess feasibility of the KK model for scale-up. For both models, the limiting behavior for small particle 
size-to-ball size ratio and the extremum behavior for a given ball size are described by “power-law.” Motivated by 
this similarity, specific breakage rate data were generated using the Austin model parameters obtained from the lab-
scale ball milling of coal and fitted by the KK model successfully. Then, using the Austin’s scale-up methodology, the 
specific breakage rate was scaled-up numerically for various mill diameter scale-up ratios and ball sizes of 30–49 mm 
and coal particle sizes of 0.0106–30 mm. PBM simulations suggest that the KK model predicts identical evolution of 
the particle size distribution to that by the Austin model prior to scale-up. Upon scale-up, the differences are relatively 
small. Hence, modification of the exponents in the Austin’s scale-up methodology is not warranted for scale-up with 
the KK model. Overall, this study has established the similarity of both models for simulation and scale-up.
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1. Introduction
Tumbling ball mills have been commonly used in a mul-

titude of industries, especially the minerals industry (Austin 
et al., 1984). Population balance modeling (PBM) enables 
engineers to simulate, design, control, and scale-up various 
particulate processes (Randolph and Larson, 1988; King, 
2001), including the tumbling ball milling (Austin et al., 
1984; Prasher, 1987). The size-discrete, time-continuous  
form of the PBM (Sedlatschek and Bass, 1953) for a well-
mixed ball mill operating in batch mode is expressed as
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where i and j are the size-class indices running up to Ns 
(sink size class). Here, t, Mi, Si, and bij represent time, mass 
fraction, specific breakage rate parameter, and breakage 
distribution parameter, respectively. Eqn. (1) also assumes 
first-order (linear) breakage kinetics and has been success-
fully used for simulating the milling of a wide variety of 
materials in different types of mills (Austin et al., 1984; 
King, 2001). Readers are referred to Bilgili and Scarlett 
(2005) and Capece et al. (2011) for an extensive review 
and a PBM framework for treatment of nonlinear breakage 

kinetics.
It has been experimentally well-established that Si varies 

significantly with design and operating conditions for a 
given material to be ground in ball mills (Austin et al., 
1984). The celebrated Austin model describes how Si varies 
as a function of particle size xi:
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Here, aT and μT are parameters that strongly depend on the 
milling conditions, the material, and the ball size, whereas 
α and Λ are positive constants that largely depend on the 
properties of the material. Austin et al. (2007) assert that 
Λ can be satisfactorily taken as 3 for most materials. Some 
researchers assumed Λ = 3 (e.g., Bwalya et al., 2014) or 
fitted Λ to find it within ±10 % of this value (Rogers et 
al., 1986; Petrakis et al., 2017); yet others found notably 
different values: 4.74 (Chimwani et al., 2013) and 2.4 
(Shahcheraghi et al., 2019). Traditionally, these parameters 
have been estimated via either direct calculation of Si by 
one-size-fraction method (Austin and Bhatia, 1971–72) or 
the optimization-based back-calculation method (Klimpel 
and Austin, 1977) using experimental data from small or 
pilot scale ball mills. As balls are an integral element of 
the ball mill design, the impact of ball size dB on aT and 
μT has been extensively studied (Austin et al., 1976a; 
1984; Katubilwa and Moys, 2009). The Austin model can 
be recast into the following form with explicit ball size 
dependence (e.g., Katubilwa and Moys, 2009, with slight 
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differences in formalism):
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where a0 and μ0 are the values of aT and μT for specific ball 
size dB,0 in the small/pilot scale batch milling experiments, 
while η and ξ are constant ball-size exponents. For a mix-
ture of balls, the specific breakage rate is calculated from 
the mass fraction of each ball size MB, p and its correspond-
ing Si, p as follows:
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Scale-up of tumbling ball mills from small-scale batch 
mills to industrial scale mills has been successfully im-
plemented within the context of PBM (Austin et al., 1984; 
Yildirim et al., 1999; Chimwani et al., 2014; De Oliveira 
and Tavares, 2018). In this approach, empirical equations 
are used for determining the dependence of the breakage 
parameters on ball/mill dimensions and operating vari-
ables at the lab-scale and large-scale industrial mills. It 
is important to emphasize that scale-up from a batch mill 
to continuous large-scale mills entails modification of the 
breakage parameters (Si and bij) as well as consideration of 
the residence time distribution and internal–external clas-
sification in the continuous mills (Herbst and Fuerstenau, 
1980; Austin et al., 1984; Rogers and Austin, 1984; De 
Oliveira and Tavares 2018). Although each one of these 
aspects is important, this study focuses on the scale-up of 
the specific breakage rate Si.

Upon scale-up, Si is known to change significantly, 
whereas bij or its cumulative counterpart Bij is generally 
assumed to remain invariant unless ball size/type changes 
significantly (Herbst and Fuerstenau, 1980; Austin et al., 
1984). In accounting for scale-up related changes, the 
Austin’s methodology scales-up Si in Eqn. (2) via correc-
tion factors K1–K5 that depend on the design parameters of 
the dry ball mill and operating conditions as follows:
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where D, J, U, and ϕC denote the mill diameter, the frac-
tional mill filling by the balls, the void filling fraction, and 
the fraction of actual rotation speed compared to the critical 
speed NC. The subscript T refers to the parameters used in 
the small-scale batch test, which are used to fit the model 
parameters in Eqns. (2) and (3). Typical scale-up exponents 
are N0 = 1, N1 = 0.5, N2 = 0.2, N3 = 2, and N4 = 0.2 (Austin 
et al., 1984). However, other values of N3 were also used 
such as 1 (Yildirim, 1999) and 1.2 (Austin et al., 2007). 
One should note that N0 and N3 should be taken as ξ and η 
of Eqn. (3), respectively, from a study on the ball size im-
pact on Si at the test (T) scale, which is a preferred approach 
(Mulenga, 2017).

While the Austin model in Eqn. (2) or (3) has been the 
most widely used kinetic model for ball milling, Kotake et 
al. (2002, 2004) developed the following kinetic model for 
the breakage of narrowly sized feed with size xf:
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which we briefly refer to as the KK (Kotake–Kanda) 
model for the sake of simplicity. The parameters C1 and 
C2 strongly depend on the milling conditions and material 
properties, whereas α is a positive constant that largely 
depends on the properties of the material; m and n are 
material-dependent, ball size exponents. Kotake et al. 
(2002, 2004) and Deniz (2003) demonstrated the fitting 
capability of this model for ball milling of a multitude of 
minerals. The KK model, Eqn. (10), is appealing as it has 5 
parameters as opposed to the Austin model with 6 parame-
ters, when ball sizes are explicitly considered. The milling 
studies, where the back-calculation approach involved 
more than a few breakage parameters to be estimated, have 
shown that the accuracy decreases as the number of param-
eters to be estimated increases (Klimpel and Austin, 1977; 
Kwon and Cho, 2021). However, to the best knowledge of 
the author, the KK model has not been used for the PBM 
simulation of ball milling of a natural feed with a wide size 
particle size distribution (PSD), and no scale-up has been 
performed using it. More importantly, the KK model has 
never been compared to the Austin model.

The present theoretical investigation seeks answers 
to the following questions: (i) Are there any similarities 
between the Austin model and the KK model despite their 
different mathematical forms? (ii) Is the Austin’s scale-up 
methodology (scale-up correction factors) applicable to 
the KK model? (iii) Do these models predict similar 
time-wise evolution of PSD in ball mills before and after 
scale-up? To be able to answer these questions, we first 
generated synthetic specific breakage rate data using the 
Austin model, whose parameters were obtained from the 
lab-scale ball milling of coal. Next, this data was fitted by 
the KK model to determine its parameters. Then, using 
the Austin’s scale-up methodology, the specific breakage 
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rate was scaled-up numerically (virtual scale-up) using 
both models for various mill diameter scale-up ratios D/DT 
from 4 to 10, ball sizes dB of 30–49 mm, and coal particle 
sizes xi of 0.0106–30 mm. PBM simulations assumed 
plug flow and invariance of bij in the large-scale mills and 
incorporated the scaled-up Si values. The PBM simulations 
were performed for the small-scale mill and the large-scale 
mills. Upon scale-up, we find that the differences in both 
models’ predictions are relatively small. Instead of just 
using N1 = 0.5 and N2 = 0.2 for the virtual scale-up with 
the KK model, which is based on the Austin’s scale-up 
methodology, we also fitted these exponents to the Si values 
generated by the Austin kinetic model, keeping the other 
scale-up exponents the same. Comparison of the PSD evo-
lution prediction by the KK model (with/without modified 
N1 and N2) and the Austin model will allow us to find the 
answers to the above-mentioned questions.

2. Theoretical approach
2.1 Experimental data and model calibration

The KK model can be cast into the following form, 
which is valid for any arbitrary particle size xi
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Note that both Eqns. (3) and (11) are explicit in dB and 
xi, which enables us to discern any similarities or differ-
ences between the two models by analyzing the limiting 
behavior for small particle size-to-ball size ratio and the 
extremum behavior for a given ball size. To demonstrate 
that the KK model can predict the same Si as that predicted 
by the Austin model, we need to have Si parameters from 
an experimental data set on batch ball milling. Hence, we 
considered the experimental work on the batch ball milling 
of a South African coal (Katubilwa and Moys, 2009). They 
fitted and/or set the Austin model parameters as follows: 
a0 = 0.48 mm–0.81∙min–1, μ0 = 19.27 mm, dB,0 = 38.8 mm, 
α = 0.81, Λ = 3, ξ = 1, and η = 1.96. Using this set of pa-
rameters, a synthetic data set for Si was generated by the 
Austin model using Eqn. (3) for ball sizes of 30–49 mm 
with increments of 1 mm and coal particle sizes of 0.0106–
30 mm with a geometric progression ratio of 21/13. As the 
purpose of this study is to examine theoretical similarity of 
the KK model to the Austin model, we did not fit the KK 
model to the experimental data directly, but to the synthetic 
Si data generated by the Austin model to minimize any bias. 
Both models have been shown to fit various ball milling 
data successfully in the milling literature; the question we 
seek to answer here is not how well they can fit specific 
experimental data. Therefore, the parameters of the KK 
model, Eqn. (11), were estimated by minimizing the sum-
of-squared residuals between the KK model prediction 
and the synthetic data generated by the Austin model for 
the South African coal. In comparison to no transform 

and logarithmic transform, a square-root transform of the 
response (Si) led to the best overall fitting and simulation 
results when the KK model with the estimated parameters 
were compared with the Austin model. Hence, only the KK 
model parameters obtained by fitting after the square-root 
transform of the response (Si) are presented. The optimiza-
tion was performed via the Marquardt–Levenberg method 
in Minitab version 21.1.

2.2 Virtual scale-up
A virtual scale-up of the specific breakage rate Si was 

performed from the small-scale batch mill to the large-
scale continuous ball mills. Using the Austin’s scale-up 
methodology, the specific breakage rate Si obtained experi-
mentally for the Austin model (Katubilwa and Moys, 2009) 
and the KK model with the estimated parameters (refer to 
Section 2.1) were scaled-up numerically for various mill 
diameter scale-up ratios D/DT from 4 to 10, ball sizes dB 
of 30–49 mm, and coal particle sizes xi of 0.0106–30 mm. 
For simplicity, K4 and K5 are set to 1 in this study for the 
scale-up with both models regardless of any particular val-
ues of J, U, and ϕc values because K4 and K5 are indepen-
dent of dB/dT ≡ dB/dB0 and D/DT, which were varied in this 
study. Hence, the scaled-up Si, i.e., Si*, was calculated by
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The above equations incorporate K1, K2, and K3 directly, 
which depend on dB/dB0 and D/DT. First, Eqn. (12) was 
used to generate the Si* by the Austin model for all scale-up 
scenarios with various dB/dB0 and D/DT. These scaled-up 
data were taken as the “synthetic scale-up data” against 
which the scale-up with the KK model was compared. 
Then, two different virtual scale-up approaches for the 
KK model were used. In the first approach, the standard 
scale-up exponents of the Austin’s scale-up methodology, 
i.e., N1 = 0.5 and N2 = 0.2, along with N4 = 0.2 were used 
in Eqn. (13) to predict the Si*. However, as there is no prior 
scale-up study with the KK model, one cannot assume 
that the Austin’s scale-up exponents N1 and N2 are directly 
applicable for use in Eqn. (13). Hence, in the second ap-
proach, we fitted Si* values generated by Eqn. (12) for each 
D/DT from 4 to 10 and ball sizes dB of 30–49 mm using 
Eqn. (13) and minimizing the following standard error SE:
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which allowed us to estimate N1 and N2. An additional fit 
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was performed to minimize SE for all D/DT cases simulta-
neously. Here, N and Np refer to the total number of data 
points and parameters estimated, respectively. Then, these 
simultaneously estimated values of N1 and N2 were used to 
predict Si* for each scale-up scenario separately.

2.3 PBM simulations
The scale-up from a small batch mill or a pilot-scale 

mill to a large-scale industrial continuous mill is a complex 
endeavor, entailing considerations of the residence time 
distribution (RTD), internal classification, and external 
classification in the continuous mill circuits (Herbst and 
Fuerstenau, 1980; Austin et al., 1984; Rogers and Austin, 
1984; De Oliveira and Tavares, 2018) besides scale-up 
of the specific breakage rate. However, any consideration 
of these factors in the scale-up process would complicate 
the analysis to discern the differences between the Austin 
model and KK model in the scale-up of Si. Hence, we 
followed the simplest approach for the modeling of an 
open-circuit continuous mill by assuming plug flow behav-
ior and disregarding any internal classification in the mill. 
This simple approach purposefully isolates the problem 
of “breakage kinetics” in scale-up and allows us to focus 
on the discrimination of the KK model from the Austin 
model within the context of simulation and scale-up. The 
plug-flow is a viable assumption for some industrial scale 
ball mills (Austin, 1973). For example, a 10 tanks-in-series 
model represented the RTD data for a large-scale cement 
ball mill (Austin et al., 1975). The plug-flow assumption 
was also adopted by other researchers in the ball mill 
scale-up (Chimwani et al., 2014). Developing a sophisti-
cated PBM for a continuous ball mill circuit with internal–
external classification is not within the scope of this study.

Note that Eqn. (1) is applicable to mills operating in 
batch mode as well as plug-flow continuous mode. One 
can replace time t with contact time t* = y/u for any axial 
position y in the mill with u denoting the average axial ve-
locity of the particles: u = L/τ = LF/Mh, where τ, L, F, and 
Mh stand for the space-time (the average residence time), 
length of the mill, inlet mass flow rate, and mass hold-up at 
steady state, respectively. So, after replacing t with t*, one 
can solve the set of ordinary differential equations (ODEs) 
in Eqn. (1) with the initial condition Mi(0) = Mi,ini, with 
Mi,ini representing the feed PSD, and predict the steady-
state PSD at t* = τ. Henceforth, although we use the above 
formalism, for the sake of simplicity, we will still denote 
time as t in the results, but keeping in mind, t represents 
retention time in the batch mill and contact (residence) time 
in the plug-flow continuous mill at the steady state.

In the PBM simulations, we used the Si values in 
Section 2.1 for the small-scale batch mill simulations and 
Si* values, as described in Section 2.2, for the continuous 
milling. The following cumulative breakage distribution 
parameters Bij were taken from Katubilwa et al. (2011) 

about the same South African coal for which Si parameters 
were reported in Section 2.1:

    1 11γ β
ij i j i jB x x x x      
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Here, 0 < ϕ < 1 is a breakage constant, and γ and β are 
breakage exponents. For the South African coal, ϕ, γ, and 
β were reported to be 0.51, 0.53, and 3.2, respectively. It 
is well-known that these parameters are largely material 
dependent, and are relatively insensitive to the milling con-
ditions, except the ball size (Austin et al., 1984; Prasher, 
1987; King, 2001). In a more elaborate model, one could 
incorporate the impact of ball size on Bij by making γ de-
pendent on the ball size (Austin et al., 2007). In the present 
simulations and scale-up, we assumed that Bij remain in-
variant to ball size and scale-up, similar to what Chimwani 
et al. (2014) implemented. Using the Bij values from Eqn. 
(15), we calculated bij via bij = Bij – Bi+1j.

The initial PSD for the small batch mill simulation and 
the feed PSD for the continuous mill simulation were taken 
the same: a Gaussian PSD with a mean size of 20 mm and a 
standard deviation of 2 mm. The Gaussian PSD was gener-
ated using the function “normpdf” in MATLABTM version 
9.11. Considering the time scale of the batch milling exper-
iments (Katubilwa and Moys, 2009), we simulated 0.5, 1, 
2, 4, and 8 min of milling time (or residence time). Another 
rationale for the selection of 8 min is the following: power- 
station boilers usually demand 60–70 % of coal particles 
below 75 μm (Prasher, 1987). Our exploratory simulations 
suggest 8 min residence time in the large-scale mills could 
meet this demand approximately. In all PBM simulations, 
the number of size classes Ns and the geometric progression 
ratio were set as 320 and 21/13, respectively, which yields 
grid-independent simulation results. The set of ODEs in 
Eqn. (1) along with either Eqns. (3), (11), and (15) for 
the small batch mill or Eqns. (12), (13), and (15) for the 
large-scale continuous mill was solved using the function 
“ode15s” in MATLAB, which is a highly accurate, variable 
order–step-size ODE solver (Shampine et al., 2003). The 
relative error tolerance and the absolute error tolerance 
were set as 10–4 and 10–6, respectively.

3. Results and discussion
3.1 Austin model vs. Kotake–Kanda model

Despite the differences in their mathematical forms, both 
the Austin model and the KK (Kotake–Kanda) model have 
similar limiting behavior and extremum behavior. Let us 
first consider the limiting case of xi << dB, for which Eqns. 
(3) and (11) reduce to

 0 B,0 B 1 B and ξα m α
i i i iS a x d d S C d x   
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respectively, because the dominator of Eqn. (3) and expo-
nential term in Eqn. (11) approach 1. Clearly, both models 
provide power-law dependence of Si on xi and dB in this 
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limit. Note that xi << dB has not been strictly defined and 
xi/dB < O(10–2) is reasonable for this limiting behavior. To 
prevent a possible confusion, we assert that this limiting 
behavior is not a practically irrelevant asymptotic limit. 
As demonstrated by Austin et al. (1976b) and De Oliveira 
and Tavares (2018), the whole milling kinetics could be 
governed by this limiting behavior if the feed or initial size 
is much smaller than the ball sizes used. The KK model can 
be made equivalent to the Austin model by imposing

1 0 B,0 andξC a d m ξ    

 

(17) 

 

 

  

 (17)

as well as the sameness of α in both equations in terms of 
the limiting behavior.

Let us now consider the extremum behavior of Si by 
setting dS/dx = 0 after taking the equivalent particle 
size-continuous forms of Eqns. (3) and (11). This analysis 
yields the particle size xm at which Si is at a maximum and 
has the following Sm:
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for the Austin model and the KK model, respectively. 
Similar to the limiting behavior, both models predict a 
power-law dependence of xm and Sm on dB. However, the 
exponents for the limiting behavior and the extremum be-
havior are different. One can make both models equivalent 
in terms of the extremum behavior alone, i.e., identical xm 
and Sm, by setting the KK parameters as

 1 0 B,0e 1 ξαC a α Λ d   
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n = η, m = –ξ, and same α in both equations.
An interesting theoretical question arises as to what 

happens if the equivalence conditions, i.e., either Eqn. 
(17) for the limiting behavior or Eqns. (22)–(23) for the 
extremum behavior are imposed on the KK model. We note 
that the conditions imposed on C1 are incompatible because 
eα(1–α/Λ) = 1 is overly restrictive and cannot be satisfied, 
except for α = 0, which is untenable. If one imposes the 
equivalence in terms of the extremum behavior, then C1 
provided by Eqn. (22) will be similar to C1 provided by 
Eqn. (17) in terms of the power-law dependence with the 
same exponent ξ. However, Eqn. (22) will overpredict Si by 
a factor of eα(1–α/Λ) in the limit xi << dB. This factor equals 
1.641 (64.1 %) for the coal considered in Section 2.1, 
which is not acceptable.

The upshot of the above theoretical analysis is that the 

KK model is similar, but not equivalent or identical, to 
the Austin model in terms of the limiting behavior and the 
extremum behavior. It is impossible to ensure equivalency 
of these models in terms of both limiting behavior in the 
size domain xi << dB and the extremum behavior in the 
neighborhood of xi = xm. Owing to the power-law depen-
dence of Si on xi and dB in the size domain xi << dB and that 
of xm and Sm on dB, we hypothesize that both models could 
predict similar Si while satisfying the limiting behavior 
and the extremum in some approximate statistical sense. 
Note that they may differ significantly in the size domain 
xi << dB and near the extremum. This hypothesis can be 
tested by first fitting the KK model parameters to the Si 
generated by the Austin model and then analyzing the re-
sulting Si profiles as well as these models’ prediction of the 
temporal evolution of the PSD. To this end, the synthetic 
Si data generated by the Austin model, whose parameters 
were obtained by fitting to the ball milling data on a South 
African coal (refer to Section 2.1), were fitted by the KK 
model. The parameters of the KK model are presented in 
Table 1. The sum-of-squared errors was 4.08 min–1, and 
the standard error SE of the fit was 3.69 × 10–2 min–0.5. The 
parameters had low standard errors: all below 8 %. Clearly, 
the KK parameters in Table 1 will not satisfy the require-
ments of Eqn. (17) and Eqns. (22)–(23), which, respec-
tively, ensure equivalency in terms of the limiting behavior 
and the extremum behavior. These strict conditions are not 
required for the models to be similar both qualitatively and 
quantitatively when experimental errors in determining Si 
are considered (see later discussion).

Fig. 1 presents the specific breakage rate Si data gener-
ated by the Austin model for the South African coal and its 
fitting by the KK model, which led to the estimated param-
eters in Table 1. While there are minor deviations, the KK 
model estimated the Si profiles and the extremum behavior 
reasonably well. The KK model exhibited a slightly de-
pressed, shifted peak as compared with the Austin model. 
Both models predict a cliff or falling off Si for xi > xm, 
which can be explained by the inability of the balls to nip 
or capture the particles effectively. In view of Eqn. (16), 
the values of ξ = 1 and m = –1.444 suggest that the smaller 
ball sizes are effective for xi << dB because for the smaller 
particles, the number frequency of the collisions with the 

Table 1  The KK model parameters obtained from fitting to the synthetic 
data generated by the Austin model.

Parameter Value Unit SE (%)

C1 107.5 mm0.494∙min–1 5.81

m –1.444 – 1.10

α 0.9496 – 0.242

C2 370.6 mm1.364 7.30

n 2.364 – 0.876
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beads govern the specific breakage rate, which is suggested 
to be scaled by the inverse of dB, as signified by ξ = 1 
(Austin et al., 1984). Overall, both models’ phenomenolog-
ical representation of the breakage kinetics appears to be 
qualitatively and quantitatively similar.

The location of the extremum points in Fig. 1 are given 
by xm–Sm, which depend on the ball size dB and are ob-
tained via Eqns. (18)–(21) for the Austin model and the KK 
model, respectively, as follows:

2 1.96 0.588
m mB B1.063 10 and 0.3423x d S d    

 

(24) 

 

 

  

 (24)
3 2.36 0.801

m mB B2.562 10 and 0.1439x d S d    

 

(25) 

 

 

  

 (25)

Fig. 2 depicts the variation of xm and Sm with dB based on 
Eqns. (24) and (25). According to the Austin model, each 

ball size most effectively breaks a certain particle size. 
Large balls are the best for breaking coarse particles; small 
balls are the best for breaking small particles. For example, 
46 mm balls are most effective for breaking ~20 mm parti-
cles; yet, they are the worst for breaking <~8 mm particles; 
30 mm balls are most effective for the latter. Practically, 
for a feed with wide PSD, the common practice is to use a 
mixture of different ball sizes (Austin et al., 1984; Prasher, 
1987; Katubilwa and Moys, 2009).

As can be seen from Fig. 2, the KK model provides a 
similar ball size dependence of Sm and xm to that by the 
Austin model although there is some deviation. The mean 
relative deviation for Sm and xm were 8.18 % and 7.31 %, 
respectively, while the maximum relative deviation for Sm 
and xm were 13.2 % and 16.1 %, respectively. One interest-
ing trend is that as dB increased, the Sm deviation of the KK 
model from the Austin model decreased, while the xm devi-
ation increased, which counter each other. This observation 
along with <10 % mean relative deviation overall imply 
that the deviations may have small impact on the PBM 
simulation and scale-up results. This is indeed the case, as 
will be demonstrated next through PBM simulations before 
and after scale-up.

To develop a deeper understanding of the ball size effects, 
one must resort to Discrete Element Modeling (DEM) of 
tumbling ball mills. DEM provides significant fundamental 
insights and microdynamic information such as collision 
energies among the balls–particles–mill wall/liners and 
their frequencies (Tavares, 2017; Rodriguez et al., 2018). 
In an excellent critical analysis, Rodriguez et al. (2018) 
pointed out some fundamental learnings from the DEM: 
(i) Collision energies involving events with only particles 
(particle–particle and particle–liner) are not sufficiently 
high to cause breakage of particles and (ii) a fraction of 
the collisions inside the ball mill do not involve particles; 
hence, they do not directly contribute to particle breakage. 
In agreement with the above, the multi-scale PBM–DEM 
modeling of the experimental tumbling ball mill (Kotake 
et al., 2002) by Capece et al. (2014) predicted the Si profile 
similar to those in Fig. 1. Moreover, their simulations 
suggest that for a given narrow feed size, an effective ball 
size that maximizes the specific breakage rate exists. This 
effective ball size appears to maximize collision frequency 
with the particles (ball–particle collisions) with sufficiently 
high impact energy above a minimum threshold impact en-
ergy that is particle size-dependent. Such minimum impact 
energies required to break individual particles under impact 
loading should be determined experimentally (Tavares and 
King, 1998; Vogel and Peukert, 2003; Tavares, 2007).

While the analysis of the data in Figs. 1 and 2 suggests 
that the KK model is similar to the Austin model and 
they both provide similar Si, xm, and Sm, one would argue 
about the deviations. At this juncture, it is imperative to 
mention the errors involved in the determination of Sm and 

Fig. 1 Size dependence of Si for various ball sizes: fitting by the KK 
(Kotake) model to the synthetic data generated by the Austin model.
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xm. For example, Kotake et al. (2002; 2004) described an 
averaging procedure to determine Sm and xm because of 
the experimental scatter around the maxima. The experi-
mental deviations were certainly greater than the <~10 % 
Sm and xm deviations of the KK model from the Austin 
model observed here. Moreover, the 85 % of the fitted S1 
values by the KK model were within a band of ±20 %, 
with 15 % of the values outside this band (Kotake et al., 
2004); similarly notable deviations can be seen in Deniz 
(2003). Most importantly, a long-due study (Shahcheraghi 
et al., 2019) clearly demonstrated that at 95 % confidence 
level, the experimentally determined Si parameters of the 
Austin model had 21.7–34.1 % uncertainty, whereas the 
Bij parameters had 7.8–17.8 % uncertainty. Hence, the de-
viations shown in Figs. 1 and 2 between the Austin model 
and the KK model would most likely be within the range 
of experimental uncertainty when the two models are fitted 
to the same experimental data with repeats. This has never 
been done in the experimental ball milling literature. In this 
study, we will confirm the similarity of the two models via 
PBM simulations next.

A batch ball milling process was simulated by PBM, 
as described in Section 2.3 to assess if the deviations 
between the two models’ Si values could cause significant 
difference in the simulated time-wise evolution of the PSD. 
To the best knowledge of the author, this is the first study 
in which a batch milling process has been simulated by 
the KK model. Fig. 3 clearly illustrates that despite the Si 
deviations illustrated in Fig. 1, the two models simulated 
the temporal evolution of the PSD almost identically. The 

maximum deviations in the PSDs estimated by the KK 
model and the Austin model are within a few percentages. 
In view of the above discussion and the simulation results, 
it is clear that the PBM with either the KK model or the 
Austin model yields a similar temporal evolution of the 
PSD in a batch mill prior to scale-up. The KK model has 
one less parameter than the Austin model (5 vs. 6); its use 
may be advantageous for parameter estimation.

3.2 Virtual scale-up with the KK model
Historically, the Austin kinetic model has been used 

along with Austin’s methodology for ball mill scale-up 
(Austin et al., 1984). As the KK model has never been used 
for ball mill scale-up, it is doubtful if it can be integrated 
with the Austin’s scale-up methodology. In Section 2.2, we 
developed the scaled-up specific breakage rate parameter 
Si* using this methodology. To the best knowledge of the 
author, this is the first attempt to use the KK model for 
scale-up, albeit virtual. This virtual scale-up will allow 
us to assess if the KK model could provide (or fit to) Si* 
similarly to the Austin model upon scale-up. Table 2 
presents the virtual scale-up scenarios and the standard 
error SE, as per Eqn. (14). Four diameter scale-up ratios 
D/DT with ball sizes of 30–49 mm and coal particle sizes 
of 0.0106–30 mm were considered. The Austin model, via 
Eqn. (12), was used to produce the synthetic scale-up Si* 
data to which the Si* generated by the KK model, via Eqn. 
(13), will be compared (SU1–4 in Table 2). In SU1–SU4, 
standard values of the scale-up correction exponents, i.e., 
N1 = 0.5 and N2 = 0.2 were used. In SU5–SU8, N1 and N2 
were estimated by fitting Eqn. (13) to the synthetic scale-up 

Table 2  Standard error SE calculated or estimated by Eqn. (14) with 
the KK model estimation and the synthetic scale-up data generated 
by the Austin model. The analytical data is available publicly at  
https://doi.org/10.50931/data.kona.19596367

Scale-up 
no.

D/DT (–) N1 (–) N2 (–) SE (min–0.5)

SU1  4 0.5 0.2 5.79 × 10–2

SU2  6 0.5 0.2 6.90 × 10–2

SU3  8 0.5 0.2 7.78 × 10–2

SU4 10 0.5 0.2 8.47 × 10–2

SU5  4 0.455 0.239 5.07 × 10–2

SU6  6 0.455 0.241 5.56 × 10–2

SU7  8 0.455 0.242 5.88 × 10–2

SU8 10 0.455 0.242 6.07 × 10–2

SU9a  4 0.455 0.241 5.07 × 10–2

SU10a  6 0.455 0.241 5.56 × 10–2

SU11a  8 0.455 0.241 5.88 × 10–2

SU12a 10 0.455 0.241 6.07 × 10–2

a The SE of simultaneous fitting with SU9–12 was 
5.66 × 10–2 min–0.5.

Fig. 3 PBM simulation of the time-wise evolution of the cumulative 
PSD in a batch mill with an initial Gaussian PSD (mean size: 20 mm, 
SD: 2 mm) and dB = 38 mm.
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data for each D/DT separately. In SU9–SU12, they were fit-
ted to the synthetic scale-up data for all D/DT data together.

Fitting of the scaled-up specific breakage rate parameter 
Si* by the KK model to the synthetic scale-up Si* data 
(Austin model) either one-at-a-time for each scale-up 
scenario (SU5–8) or simultaneously for all scenarios 
(SU9–12) led to almost identical exponents of the scale-up 
correction factor: N1 = ~0.46 and N2 = ~0.24, which devi-
ated only by 8 % and 20 % from the standard values of the 
Austin’s scale-up methodology, i.e., N1 = 0.5 and N2 = 0.2 
(SU1–4). Hence, one set of modified N1 and N2 can be used 
for the scale-up of Si of the KK model. When the SE of 
SU9–12 was compared with that of SU1–SU4, the modi-
fied N1 and N2 reduced SE by 12 %, 19 %, 24 %, and 28 %, 
respectively, for D/DT values of 4, 6, 8, and 10.

At the small-scale, the fitting of the KK model to the 
synthetic Si data for its parameter estimation has a SE 
of 3.69 × 10–2 min–0.5. Upon scale-up, the SE values in 
Table 2 for SU1–4 are 57 %–130 % higher than that 
associated with the parameter estimation. The situation 
is somewhat better when the newly estimated, modified 
N1 = 0.455 and N2 = 0.241 are used. The SE values for 
SU9–12 (upon scale-up) are 37 %–65 % higher than that 
associated with the parameter estimation. Clearly, the Si 
differences between the KK model and the Austin model 
become more pronounced upon scale-up whether the stan-
dard Austin scale-up correction exponents or the modified 
exponents are used. While the SE increased upon scale-up, 
as intuitively expected, in absolute terms, the SE values are 
still low which will become apparent once the deviations 
are presented in visual form next.

Figs. 4 and 5 present the synthetic Si* data by the Austin 
model and Si* provided by the KK model (SU1 and SU3) 
and fitted by the KK model (SU9 and SU11). The data from 
the other scale-up scenarios were not presented in graphical 
form for the sake of brevity. It suffices to state that Figs. 4 
and 5 are representative of the general scale-up trends for 
all scenarios.

A cursory look at Figs. 4 and 5 vs. Fig. 1 reveals the 
remarkable impact of the scale-up on the specific breakage 
rate. Upon scale-up and an increase in D/DT, the specific 
breakage rate increases, which accords well with the ex-
perimental ball milling literature (Austin, 1973; Austin et 
al., 1984). N1 captures the increase in mill power as mill 
diameter increases (Austin, 1973). Sm and xm also increase, 
which suggests the maximum point moves to the right and 
its peak is heightened. With an increase in D/DT, the cliff 
after xi > xm becomes less pronounced and the abnormal 
breakage region shrinks. In fact, for dB = 46 mm, the maxi-
mum point almost disappears. Obviously, for a higher D/DT 
value, the balls are dropped from a greater height, and they 
hit the particles at a much higher impact force. According 
to a semi-theoretical analysis (Hayashi and Tanaka, 1972), 
the impact force for free-falling balls scales with D0.5. A 

recent advanced DEM simulation study (De Carvalho et 
al., 2021) provides a more fundamental explanation. Their 
DEM simulations point out a significant expansion of the 
collision frequency–collision energy envelope as the ball 
milling is carried out at larger scales: from batch to pilot 
and then to industrial mills. They determined the specific 
collision frequency to be 2404 collisions/kg∙s, 2746 col-
lisions/kg∙s, and 3795 collisions/kg∙s at the batch, pilot, 
and industrial scales, respectively. Overall, higher impact 
forces, collision energies, and specific collision frequency 
explain the higher specific breakage rates upon scale-up 

Fig. 4 Comparison of Si*generated by the Austin model and the KK 
model with two sets of N1–N2 (D/DT = 4).
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Fig. 5 Comparison of Si* generated by the Austin model and the KK 
model with two sets of N1–N2 (D/DT = 8).
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fundamentally.
The differences in Si* between the Austin model and 

the KK model, with/without the modified N1 and N2 expo-
nents, illustrated in Figs. 4 and 5 seem to be unremarkable 
and most likely statistically insignificant when actual ball 
milling data are considered. The readers are referred to the 
discussion and the references in Section 3.1. However, 
proving this point with comparative experimental study 
is beyond the scope of this study. We pose a different, yet 
quite relevant question: can the Si* differences depicted in 
Figs. 4 and 5 translate into significant differences in terms 
of the PSD evolution with residence time in a continuous 
mill?

Fig. 6 illustrates that the PSD shifts from the Gaussian 
feed PSD to the left monotonically along the axial direc-
tion of a continuous mill with D/DT = 4, which is scaled 
from the small batch mill whose PSD evolution is shown 
in Fig. 3. The time refers to retention time in the batch 
mill (Fig. 3) and the residence time in the continuous mill 
(Fig. 6), which corresponds to different axial locations in 
the mill. A cursory look at Fig. 6 vs. Fig. 3 reveals that the 
product becomes much finer upon scale-up, which is in 
agreement with the higher specific breakage rate parameter 
upon scale-up (Si* in Fig. 4 vs. Si in Fig. 1). A larger diam-
eter mill with D/DT = 8 (Fig. 7) exhibits similar behavior; 
the PSDs are finer as compared with those in Fig. 6, which 
again can be attributed to the respective Si* values in 
Figs. 4 and 5.

Let us now answer the question posed earlier: the Austin 
model and the KK model, with either the standard scale-up 

exponents N1 = 0.5 and N2 = 0.2 or the modified scale-up 
exponents estimated in this study, i.e., N1 = 0.455 and 
N2 = 0.241, predict very similar PSDs in a plug flow con-
tinuous mill. Although the differences increased slightly 
upon scale-up to a larger mill with D/DT = 8 (Fig. 7), both 
the Austin model and the KK model estimated similar 
PSDs, with a max. deviation of 4 % at 10 μm in the cumu-
lative mass fraction.

An interesting finding from the continuous mill simu-
lations presented in Figs. 6 and 7 is that the modification 
of the Austin’s scale-up exponents N1 and N2 was not 
warranted for the integration of the KK model with the 
Austin’s scale-up methodology. The KK model with the 
modified scale-up exponents showed less deviation from 
the Austin model than that with the standard exponents at 
the earlier residence time values. However, this trend was 
reserved at the later residence time points and at the exit 
of the mill (t = τ = 8 min). Despite the lower SE values of 
the Si* associated with the modified scale-up exponents in 
Table 2, these differences in the SE values did not seem to 
make a significant difference in terms of the PSD change 
along the mill axis and the product PSD, as proven by the 
simulation results in Figs. 6 and 7. Longer residence times 
were not considered for two reasons. First, the product 
PSD (t = 8 min) in the large-scale continuous mills reached 
the desired target approximately for coal applications: 
60–70 % below 75 μm. Second, the Austin model param-
eters were estimated using the one-size-fraction data from 
a ball milling study on South African coal (Katubilwa and 
Moys, 2009; Katubilwa et al., 2011). In these studies, the 

Fig. 7 The variation of the PSD at different residence times of the par-
ticles (different axial locations) in a continuous ball mill with plug-flow, 
D/DT = 8, and dB = 38 mm.
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Fig. 6 The variation of the PSD at different residence times of the par-
ticles (different axial locations) in a continuous ball mill with plug-flow, 
D/DT = 4, and dB = 38 mm.
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smallest feed size fraction studied contained 300–425 μm 
coal particles. Hence, both the Austin and the KK models 
extrapolate Si of the finer particle range (< 300 μm) based 
on the coarser particles’ breakage kinetics. While this is a 
common practice, we suspect that the α parameter in both 
models could be sensitive to the particle size domain in the 
model calibration. Hence, the slightly higher deviation of 
the KK model from the Austin model for particles smaller 
than 100 μm (refer to Fig. 7) could be indirectly linked to 
the model calibration and the slight differences in the α 
value (α = 0.81 for the Austin model and α = 0.95 for the 
KK model).

4. Concluding remarks and outlook
This theoretical study presents a comparative analysis 

of the Austin kinetic model and the Kotake–Kanda (KK) 
kinetic model in terms of their prediction of the specific 
breakage rate parameter as a function of particle size and 
ball size. Both models have been shown to be similar 
in terms of their limiting behavior and the extremum 
behavior because both behaviors are governed by power- 
law relationships. Mathematical requirements have been 
formulated to ensure equivalency of both models under 
these conditions; however, ensuring equivalency for both 
behaviors through these derived conditions is shown to be 
severely restrictive or incompatible. Hence, to investigate 
their similarities further, synthetic specific breakage rate 
Si data were generated by the Austin model and fitted by 
the KK model reasonably well. The PBM simulations of a 
batch (reference) mill have demonstrated almost identical 
PSD evolution, confirming the similarity of the two mod-
els. Then, a virtual scale-up from the batch reference mill 
to a continuous plug-flow mill with different D/DT has been 
performed. Using the Austin’s scale-up methodology along 
with the Austin model, the scaled-up specific breakage rate 
parameter Si* has been determined. The KK model has also 
been scaled-up using the Austin’s scale-up methodology 
with and without modified scale-up correction exponents. 
Also, the large-scale continuous mill operation has been 
simulated via PBM with the Si*. This study has overall 
demonstrated that (i) the KK model is similar, but not 
equivalent, to the Austin model, (ii) the KK model and the 
Austin model provide similar PSD evolution after scale-up, 
(iii) the modification of the Austin’s scale-up exponents 
N1 and N2 is not warranted, and (iv) the Austin’s scale-up 
methodology is applicable to the KK model as well as the 
Austin model.

This theoretical study has generated additional questions 
and ideas for further research. A well-designed experimen-
tal ball milling study, using both one-size fraction method 
and the optimization-based back-calculation method on 
several natural feed PSDs, should be conducted. The 
models should be discriminated based on their goodness-
of-fit, parameter uncertainties and confidence intervals, 

and statistical significance. Such studies could reveal if 
the KK model has some advantages in terms of parameter 
uncertainties over the Austin model as the former has one 
less parameter than the Austin model. Such a future study 
is especially important to the calibration of the KK model 
(parameter estimation) as the currently used method with 
one-size-fraction milling experiments is conducive to ac-
cumulation of experimental errors. Finally, it is hoped that 
the Kotake–Kanda model will be used within the Austin’s 
scale-up methodology for ball mill scale-up in the future.
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Nomenclature
aT model parameter in the Austin model (mm–α∙min–1)

a0 value of aT for specific ball size dB,0 (mm–α∙min–1)

bij breakage distribution parameter (–)

Bij cumulative breakage distribution parameter (–)

C1 model parameter in the KK model (mm–(m+α)∙min–1)

C2 model parameter in the KK model (mmn–1)

dB ball size (mm)

dB,0 reference ball size (mm)

D mill diameter (m)

DEM Discrete Element Modeling

F inlet mass flow rate (kg∙min–1)

J ball filling fraction (–)

KK Kotake–Kanda

K1–K5 Austin’s scale-up correction factors (–)

L mill length (m)

m, n ball-size exponents in the KK model (–)

MB, p mass fraction of ball size with index p (–)

Mh mass hold-up (kg)

Mi mass fraction in size class i (–)

N total number of data points (#)

NC critical speed (rpm)

Np total number of parameters estimated (#)

Ns total number of size classes, sink size class (#)

N0–N4 Austin’s scale-up correction exponents (–)

ODE Ordinary Differential Equation

P total number of ball sizes in a ball mixture (#)
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PBM Population Balance Modeling

PSD Particle Size Distribution

RTD Residence Time Distribution

SD standard deviation (mm)

SE standard error (min–0.5)

Si specific breakage rate parameter (min–1)

Sm maximum specific breakage rate parameter (min–1)

Si* scaled-up specific breakage rate parameter (min–1)

iS  

 

[31] 

specific breakage rate parameter for a ball mixture 
(min–1)

SU scale-up

t time (min)

t* contact or residence time (min)

u average axial velocity (m∙s–1)

U void filling fraction (–)

x particle size (mm)

xf feed particle size (mm)

xm particle size at which specific rate parameter is maximum 
(mm)

y axial position in a continuous mill (m)

Greek letters

α particle size exponent in both the Austin model and the 
KK model (–)

β, γ breakage distribution exponents (–)

ξ, η constant ball-size exponents in the Austin model (–)

Λ abnormal breakage exponent in the Austin model (–)

μT a size parameter in the Austin model (mm)

μ0 value of μT for specific ball size dB,0 (mm)

τ space-time or average residence time (min)

ϕ breakage distribution constant (–)

ϕC fraction of operating rotation speed compared to critical 
speed (–)

Subscripts

i, j size-class indices

ini initial

m maximum

p ball size index

T test condition as reference for the scale-up
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