ホソカフ 粉体工学振興財団 年 報

Hosokawa Powder Technology Foundation ANNUAL REPORT

令和5年度 (2023) No.31

ホソカワ 粉体工学振興財団 年 報

Hosokawa Powder Technology Foundation ANNUAL REPORT

令和5年度 (2023) No.31

衣・食・住や医療など、我々の日常生活で身近に氾濫しているいろいろな製品に、又、未来 に向けて開発されようとしている新素材における高純度化、微細加工等の技術、さらには、世 界的規模において問題視されている環境破壊、特に大気汚染に対する防止等、あらゆる産業分 野に粉体技術は重要な役割を果たしております。粉体工学は、これら粉体技術を基礎的に研究 し、開発する学問分野であります。

私は、私の父が大正5年4月に創業致しました細川鉄工所(現ホソカワミクロン株式会社) の経営を引き継ぎ、この粉体に関するあらゆる技術を具体化し、粉体技術を通して産業界に着 実にその地位を築いてまいりましたが、その間、各方面から多くの学術研究上のご支援をいた だきました、粉体技術に対する社会のニーズは、ますます大きく、また高度化し、その基礎と なる粉体工学の重要性もますます高くなっています。私といたしましては、いささかの私財を 学術振興、特に粉体工学を通して社会に少しでも還元できればと望むものであります。

以上の趣旨から、わが国ならびに世界の粉体工学に対する助成を主目的とし、合わせて粉体 工学に関連する優れた研究・成果に対する褒賞、国際交流に対する援助、研究発表・シンポジ ウムなどの開催およびその援助等の諸事業を目的とする財団法人ホソカワ粉体工学振興財団を 設立し、粉体工学ならびにその周辺学術の研究の発展に寄与しようとするものであります。

学術振興のもたらす社会への貢献は、人類のみならず、人類をとりまく美しい豊かな自然界 にとっても、よりよい環境に導いてくれるものと確信するものであります。粉体一筋に歩んで きたホソカワミクロン(株)75年の記念すべき節目にあたり本財団を設立でき、この財団に よるあらゆる事業が粉体工学振興のための一つの契機となり、大きな飛躍となればこれに優る 幸いはありません。

(平成3年12月20日設立)財団法人 ホソカワ粉体工学振興財団設立者 細川益男

目 次

2	挨拶			理事長	細川悦男	1
1.	事業内容	容と実施状	況の概要			3
	1-1 事	業内容の概	既要			3
	1-1-1	助成・褒	受賞事業			3
	1-1-2	自主事業				3
	1-1-3	特定事業				4
	1-2 実	施状況の概	既要			5
	1-2-1	助成・褒	受賞事業の実施状況			5
	1-2-2	自主事業	の実施状況			11
	1-2-3	特定事業	の実施状況			15
2.	役員等名	名簿				16
3.	令和 5 4	年度 助成・	褒賞事業			17
	3-1 令	和5年度	KONA 賞			17
	3-2 令	和5年度	研究助成			18
	3-3 令	和5年度	ホソカワ研究奨励賞			20
	3-4 令	和5年度	研究者育成			20
	3-5 令	和5年度	シンポジウム等開催援助			21
4.	研究成果	果等報告				22
	成果等载	報告目次				22
	4-1 令	和3年度	研究助成成果報告			26
	4-2 令	和4年度	研究者育成成果報告			171
	4-3 令	和4年度	シンポジウム等開催援助成	果報告		223

公益財団法人 ホソカワ粉体工学振興財団 理事長 細川悦男

当財団は、1991年(平成3年)12月に設立が認可され、2012年(平成24年)には内閣府から 公益財団法人に認定され、2021年12月に設立30周年を迎えました.この間、当財団は粉体工学 に関する基礎研究およびそれに携わる研究者の国際交流、研究者の育成等に対する助成・援助を通 して、我が国および世界の粉体工学の発展を支援して参りました.粉体および粉体を構成する粒子 の取り扱いを基礎とする粉体工学は、資源、食糧などの基盤分野から医薬、情報通信、新材料など の先端分野までを幅広く支えています.さらに環境問題や省エネルギーなど持続可能な社会を実現 するための種々の課題解決に対しても、大きく貢献する重要な学問分野です.当財団では、設立当 初から助成事業と自主事業を推進するとともに、財団設立30周年記念などの特定事業を行ってお ります.

助成事業では,粉体工学に関する優れた研究業績に対する褒賞(KONA賞),粉体工学に関する 研究のための研究費助成(研究助成),粉体工学に関する研究に従事する研究者の育成の援助(研 究者育成援助),粉体工学に関する研究成果公開の援助(シンポジウム等の開催援助)を実施して います.また2023年度より,粉体工学に関する若手研究者の優れた研究業績に対する褒賞(ホソ カワ研究奨励賞)を復活させ,若手研究者のインセンティブを高める活動を進めています.

KONA 賞は, 粉体工学の分野において多大な貢献をされた研究者に授与されますが, 国際的に優 れた研究業績を挙げた著名な研究者が毎年受賞されています. これまでの受賞者は国内外合わせて 計 38 名ですが, 2023 年度は, タイ国チュラロンコン大学の名誉教授である Wiwut Tanthapanichakoon 博士が受賞されました. KONA 賞は, 粉体工学に関わる世界の研究者が目指す賞として近年国際的 な注目を集めており, 理事長として大変うれしく思います.

研究助成,研究者育成援助およびシンポジウム等の開催援助に対しては,毎年大学,高専,国公 立の研究機関等より,多くの推薦・申請を受けており,大変感謝しております.2023年度は,研 究助成につきましては91件の応募があり,その中から19件の研究申請が採択されました.研究者 育成の援助につきましては,15件の申請があり,5名の大学院の学生に贈呈されました.粉体工学 の発展を担われる若い大学院の学生の皆さんの勉学と研究のための支援ができますことは,理事長 として大きな喜びです.なお,本年度も,1名の留学生が受賞されましたが,毎年,助成者の中に 留学生の方々が含まれており,世界の粉体工学の振興を図るという当財団の設立目的に適った事業

になっております.シンポジウム等の開催援助につきましては,2024年5月に姫路での開催が予定されている一般社団法人粉体工学会主催のシンポジウム「粉体プロセスのデジタルツインの実現」 と同年10月に京都での開催が予定されている第17回国際電気集じん会議現地実行委員会開催の「第 17回国際電気集じん会議」の2件が採択されました.

また、ホソカワ研究奨励賞に対しましては10件の応募があり、その中から3名の研究者が受賞 されております。新型コロナウイルス感染防止の観点などから暫く中止していました助成事業の贈 呈式を2024年3月12日に開催致しましたが、3名の受賞者に対しては、贈呈式の場を利用して、 受賞記念講演をして頂きました。いずれのご講演も大変素晴らしい内容であり、この褒賞が若手研 究者の研究活動のさらなる活性化につながれば、と思っています。

さて、財団の自主事業としては、粉体工学に関する講演討論会の開催および KONA 誌(KONA Powder and Particle Journal)の発行を行っております。第55回粉体工学に関する講演討論会は、2023年9月4日に東京ガーデンパレスにて、会場での開催とオンラインでの開催を併用した形式で実施致しました。新型コロナウイルスの影響もあり、東京での開催は5年ぶりとなりましたが、会場とオンライン参加をあわせて約240名が参加され、大変活発な講演会になりました。

KONA 誌は、当財団が年1回発行する粉体工学に関する英文の国際的学術誌であり、世界中の優 れた研究者から粉体工学に関する論文を投稿して頂き、2024年1月に第41号を発行することがで きました.本誌では、アジア、ヨーロッパおよびアメリカの3つの編集委員会が協力して編集を進 め、粉体工学に関する優れた研究者が執筆した12報のレビュー論文と、レベルの高い5報の研究 論文が掲載されております.この KONA 誌は、財団のホームページおよび J-STAGE により無料で 閲覧できるオープンアクセスの学術誌であり、Impact Factor などの論文誌としての評価指数が昨年 度よりもさらに向上し、Web での掲載論文へのアクセス数も引き続き増加しているところです.

さらに、2020年3月から2024年3月までに実施して参りました財団設立30周年記念特定事業 ですが、最終年度となる2023年度は、9月14日にドイツのアウクスブルク市において第4回国際 ホソカワ粉体工学シンポジウムを開催し、60名の参加で盛況な講演討論会となりました.この活 動を持って、特定事業も予定通り無事に終了致しましたことは、理事長として感慨深いものがあり ます.

2023 年度は、新型コロナウイルス感染症もおさまり本格的な財団の活動を実施することができ ました.また、オンラインと対面方式を併用した講演会開催方法などを積極的に取り入れることに よって、当初の事業計画を無事に実施することができました.今後も当財団は、粉体工学の研究の 発展、ならびに国際的な振興・交流とそれを担う若い人材の育成に貢献できますよう活動を続けて まいります.今後とも、皆様方のご支援、ご鞭撻をよろしくお願い申し上げます.

1. 事業内容と実施状況の概要

1-1 事業内容の概要

当財団では粉体工学の振興,発展を目指して,この分野の研究の促進,研究者の育成,支援等の ための助成・褒賞事業を推進すると共に,粉体工学に関連した情報交換と交流のための講演討論会 の開催,論文発表の機会提供ための専門誌の出版などの自主事業を行っている.さらに,時宜に応 じて経済的な状況も考慮しながらその他の特定事業を立上げ,実施している.事業内容の概要は以 下の通りである.これらの事業は,事業年度毎に理事会,評議員会の審議,承認を得て実施されて いる.

1-1-1 助成・褒賞事業

当財団の助成・褒賞事業には、6種目があり、令和5年度は公募を再開した No.3の種目(ホソカワ研究奨励賞)を含む、No.1から5の5種目について公募を行った.

No.	事業種目	事業内容
1	KONA 賞	粉体に関する研究に従事し,優れた研究業績を挙げた個人への褒賞
2	研究助成	粉体工学,粉体科学に関する研究のための助成
3	ホソカワ研究奨励賞	粉体工学に関する優れた若手研究者に対する褒賞
4	研究者育成の援助	粉体工学に関する研究に従事する大学院学生のための研究学習費の援助
5	学会・シンポジウム等の 開催援助	粉体工学に関する学会,シンポジウム等の開催に対する援助.学協会, 大学等の主催者に援助
6	出版物刊行の援助	粉体工学に関する出版物刊行の援助

1-1-2 自主事業

「粉体工学に関する講演討論会」は1968年に初回が開催され、年刊英文学術誌"KONA Powder and Particle Journal"は1983年に創刊されたもので、当財団の設立後、当財団がこれらの事業を引き継いでいる.

No.	事業種目	事業内容
1	粉体工学に関する講演討 論会の開催	粉体工学に関する重要テーマについて研究者・技術者による講演と 討論の会.原則年1回,東京・大阪で隔年に開催.定員約150名, 公開.
2	粉体工学に関する英文 学術誌KONA Powder and Particle Journal の発行	粉体工学に関する国際的学術誌. 年1回発行. 内容はレビューおよ び研究論文約 20 編を含む. 約 300 頁. 印刷物発行部数約 700 部. 世 界の学者,研究者,図書館等へ無償で配布. 電子ジャーナルとしてホー ムページ, J-STAGE に掲載.

事

業概

要

1-1-3 特定事業

当財団は、1991年12月に日本ならびに世界の粉体工学の振興を目的として設立され、2021年に 設立30周年を迎えた.これを機会として、令和2(2000)年3月に、財団設立30周年記念特定事 業が立ち上げられ、下記の内容の事業が令和5(2023)年9月までに全て実施された.下表中の1 は既に令和3年度に実施済みであり、令和4年度には2と3が実施された.実施最終年度と成った 令和5年度に4の第4回国際ホソカワ粉体工学シンポジウムが実施された.令和6年度は新たな特 定事業の実施は予定していない.

No.	事業名称	実施年度	事業内容
1		令和3年度	APT (Asian Particle Technology) 2021 シンポジウム (令和 3 年 10 月 11 日~14 日, グランフロント大阪) での Young KONA Award の授与
2	財団設立		財団設立 30 周年記念特別講演会(令和4年9月5日(月), 帝国ホテル大阪)の開催
3	30周年記念 特定事業	令和4年度	ICCCI(第7回先進材料の界面制御と評価に関する国際会議) 2022 シンポジウム(令和4年11月,山梨)にて, KONA Young Researcher Award, KONA Achievement Award の授与
4		令和5年度	第4回国際ホソカワ粉体工学シンポジウム(令和5年9月,ドイツ) の開催

1-2 実施状況の概要

1-2-1 助成・褒賞事業の実施状況

初年度以来の年次別助成事業の実績状況は以下の通りである。令和5(2023)年度は、5月に公 募を開始して7月20日に締め切られ、9月の審査委員・選考委員による審査の結果、最終的には 11月の理事会にて採択案件が決定し、公表された。なお、新型コロナウィルス感染の収束などの 諸事情を鑑みて、5年振りとなる贈呈式が令和6年3月に開催された。

												(助成	単位:千円)
			研究即	 力成		KONA	く 賞	淮	 外渡航	者援助	シンプ	ポジウム	等開催援助
年度	西暦	応募	捋	《 択	応募	採	《 択	応募	捋	《 択	応募	採	択
		件数	件数	助成金額	件数	件数	助成金額	件数	件数	助成金額	件数	件数	助成金額
H04	1992	69	20	26,000	1	1	1,000	10	6	1,800	6	3	7,000
H05	1993	86	31	20,400	8	1	1,000	8	6	1,800	3	3	6,500
H06	1994	70	25	13,800	3	1	1,000	10	5	1,500	5	3	5,000
H07	1995	88	27	15,280	5	1	1,000	11	5	1,500	1	1	200
H08	1996	84	27	15,000	3	1	1,000	8	5	1,500		(公募も	 せず)
H09	1997	57	29	18,000	5	2	2,000	8	5	1,500	0	0	0
H10	1998	66	25	17,800	5	2	2,000	7	3	900	0	0	0
H11	1999	64	21	18,000	4	2	2,000	9	4	1,200	4	2	1,500
H12	2000	79	23	17,900	4	2	2,000	11	5	1,500	2	2	1,500
H13	2001	61	31	18,900	10	1	1,000	12	5	1,500	1	1	1,000
H14	2002	68	24	18,300	3	1	1,000	7	4	1,200	4	2	2,000
H15	2003	76	24	18,200	7	1	1,000	6	4	1,200	1	1	1,000
H16	2004	101	25	17,200	5	2	2,000	10	3	900	2	2	1,000
H17	2005	120	24	23,000	5	1	1,000	(公募せず)			5	2	2,000
H18	2006	112	23	23,800	4	1	1,000		(公募+	 ±ず)	2	2	1,500
H19	2007	137	23	21,900	1	1	1,000		(公募+	ナず)	5	2	1,500
H20	2008	128	18	13,500	3	1	1,000		(公募+	ナず)	4	3	1,000
H21	2009						公募	せす	2				
H22	2010						公募	せす	2				
H23	2011	117	17	13,000	2	1	1,000		公募+	ナず	6	3	1,400
H24	2012	79	14	8,600	5	1	1,000		公募+	さず		公募+	ナず
H25	2013	119	30	23,000	3	1	1,000		公募+	ナず	0	0	0
H26	2014	126	23	19,400	6	1	1,000		公募+	ナず	1	1	1,000
H27	2015	150	22	16,700	5	1	1,000		公募+	ナず	1	0	0
H28	2016	195	23	13,800	6	1	1,000		公募+	ナず	4	1	300
H29	2017	193	21	14,600	6	1	1,000		公募+	ナず	5	1	600
H30	2018	132	18	14,000	6	1	1,000		公募-	ナず	3	1	1,000
R01	2019	119	10	7,200	4	1	1,000		公募	せず	1	0	0
R02	2020	102	12	10,000	4	1	1,000		公募-	ナず	2	1	1,000
R03	2021	136	26	22,000	4	2	2,000		公募-	ナず	1	1	1,000
R04	2022	98	21	21,000	3	2	2,000		公募+	ナず	2	1	1,000
R05	2023	91	19	19,000	2	1	1,000		公募+	ナず	2	2	1,000

事

業

概

要

Ħ	_
Ę	Ē
ž	Ĕ
加	IJ
1火 エ	И
몿	

		研究	。 客者育成	の援助	H	版物刊	行援助						<u> </u>	<u> ユートロン </u> 計
~ ~			<u>- </u> 採	択		採	択	特	別枠	拡大研	「究助成	* #	採	
中度	四暦	心暴 件数	件数	助成金額	心募 件数	件数	助成金額	件数	助成 金額	件数	助成 金額	心募 件数	件数	助成金額
H04	1992	8	5	1,000	1	1	10,000					95	36	46,800
H05	1993	15	5	1,000	2	2	10,065					122	48	40,765
H06	1994	19	6	1,200	1	1	8,000					108	41	30,500
H07	1995	19	7	1,400	0	0	0					124	41	19,380
H08	1996	20	7	1,400		(公募も	<u>ナ</u> ず)					115	40	18,900
H09	1997	16	6	1,200		(公募も	<u>と</u> ず)					86	42	22,700
H10	1998	16	9	1,800		(公募も	とす)					94	39	22,500
H11	1999	22	6	1,200		(公募も	<u>ナ</u> ず)					103	35	23,900
H12	2000	26	7	1,400		(公募も	<u>と</u> ず)	7	3,900			129	46	28,200
H13	2001	19	8	1,600		(公募も	とず)	7	3,000			110	53	27,000
H14	2002	19	8	1,600		(公募も	<u>と</u> ず)	4	4,000			105	43	28,100
H15	2003	16	9	1,800	ホソ	カワ研	究奨励賞	4	4,100			110	43	27,300
H16	2004	27	7	1,400	応募		採択	5	3,100			150	44	25,600
H17	2005	26	11	3,300	件数	件数	助成金額	6	3,800	3	15,000	165	47	48,100
H18	2006	16	11	3,300	9	3	1,500	3	3,000	2	10,000	148	45	44,100
H19	2007	22	10	3,000	11	3	1,500	3	3,000	1	5,000	180	43	36,900
H20	2008	19	10	3,000	8	2	1,000	2	1,100	0	0	164	36	20,600
H21	2009					公募	せず					0	0	0
H22	2010					公募	せず					0	0	0
H23	2011					公募	せず					125	21	15,400
H24	2012					公募	せず					84	15	9,600
H25	2013	12	9	2,700			公募	せ	ず			134	40	26,700
H26	2014	28	9	2,700			公募	せ	ず			161	34	24,100
H27	2015	30	10	3,000			公募	せ	ず			186	33	20,700
H28	2016	36	10	3,000			公募	せ	ず			241	35	18,100
H29	2017	35	11	3,300			公募	せ	ず			239	34	19,500
H30	2018	25	10	3,000			公募	せ	ず			166	30	19,000
R01	2019	22	9	2,700			公募	せ	ず			146	20	10,900
R02	2020	20	10	3,000	ホソ	カワ研	究奨励賞		公募	せす	2	128	24	15,000
R03	2021	24	14	4,200	応募		採択		公募	せす	2	165	43	29,200
R04	2022	16	10	3,000	件数	件数	助成金額		公募	せす	2	119	34	27,000
R05	2023	15	5	1,500	10	3	1,500		公 募	せす	2	120	30	24,000

◎ 令和5(2023)年度助成・褒章事業贈呈式

【日時】令和6年(2024年)3月12日(火)13:30~16:50(贈呈式·受賞講演)

【場所】ホソカワミクロン株式会社枚方本社本館 12 階大会議室

〒 573-1132 大阪府枚方市招提田近 1-9(オンライン配信によるハイブリッド方式)

- 【主催】公益財団法人 ホソカワ粉体工学振興財団
- 【後援】ホソカワミクロン株式会社

本贈呈式の開催は新型コロナウイルス感染などの諸事情から 2019 年以来 5 年ぶりとなり, また, 今回は初めて会場とオンラインでのハイブリッド開催となった.

会場からは、今期募集を再開したホソカワ研究奨励賞を受賞 された3名中2名の受賞者と、本助成事業の選考委員、当財団 評議員・理事・監事のほか、ホソカワミクロン(株の関係者など 30名程が参列した.また、オンラインでは、研究助成・研究者 育成援助並びにシンポジウム等開催援助の採択者の全員と一部 当財団関係者も併せて35名程が参加した.

本年度は,全体で120件の応募に対して,選考委員による厳 正な審査の結果,KONA賞1件,研究奨励賞3件,研究助成19件, 研究者育成援助5件およびシンポジウム等の開催援助2件が採 択され,褒賞金・助成金の総額は2,400万円となった.

式典では、細川悦男理事長開会挨拶、内藤牧男常務理事の選 考結果報告の後、受賞者に細川理事長より贈呈状が手渡された. 贈呈の際には採択者一人ひとりの所属および研究課題の紹介の 後、各採択者から挨拶と今後の抱負などが述べられた.

贈呈式理事長挨拶

オンライン記念撮影風景

続けて研究奨励賞の受賞者全員によって粉体工学に関する下記の興味深い受賞記念講演が行われた.

- 広島大学大学院先進理工系科学研究科准教授 深澤 智典 「界面特性に着目した微粒子ハンドリングの高度化」
 同志社大学理工学部准教授 山本 大吾 「界面現象を利用したアクティブマター系の創出に関する研究」
- ③ 大阪大学大学院工学研究科 講師 鷲野 公彰 「離散要素法における汎用粗視化モデルの開発」

受賞講演の後,当財団の設立からこれまでの活動について,当財団前事務局長の横山豊和氏より, 「財団設立からの30年の歩みのご紹介」と題して講演が行われた.最後に猪ノ木評議員による閉会 挨拶の後,記念撮影と懇親会が行われ,盛会の内に無事終了した.

なお、KONA 賞については、去年に引き続きグローバルでの募集を実施し、KONA 賞審査委員 ならびに選考委員による厳正なる審査を行い、本年度はタイ国チュラロンコン大学ならびに東京工 業大学の名誉教授であり、タイ国王室協会フェローでもある SCG 化学社技術顧問の Professor Wiwut TANTHAPANICHAKOON が "Contributions to the Advancement of Powder/Particle and Aerosol Science and Technology & Promotion of Bilateral Collaboration between Thailand and Japan"の業績によ り受賞された. KONA 賞の贈呈式は、本年9月3日に大阪で開催される第56回粉体工学に関する 講演討論会にて行われることになっている.

受賞講演風景

記念撮影風景 -1

記念撮影風景 -2

事

業

概

要

◎ KONA 賞 (KONA Award)

KONA 賞は, 1990 年以来, 粉粒体工学の分野で研究開発ならびに教育に大きく貢献した研究者 に毎年贈られているもので, 当初はホソカワミクロン株式会社が贈呈していたが, 1992 年から当 財団が引き継いでいる. 受賞候補者は, KONA 賞審査委員によって審査され, 選考委員会の推薦 を受けて, 最終的に理事会で承認される.

The KONA Award has been presented to the researchers who have greatly contributed to the research and development as well as education in the field of Powder and Particle Science and Technology annually since 1990. It was initiated by Hosokawa Micron Corporation and taken over by Hosokawa Foundation since 1992.

The award candidate is nominated by the KONA Award Committee and advised to the Selection Committee of the Foundation, which makes the recommendation of the awardee. It needs to be finally approved at the Board of Directors' meeting of the Foundation.

KONA 賞歴代受賞者

受賞	受賞年	KONA	A賞受賞者	安德
No.	西暦	氏名	所属 (申請当時)	未視
1	1990	Charles S.	University of Southern	Outstanding achievements in particle flow dynamics, slurry flow
		CAMPBELL	California	fluidization, and particle flow mechanics/heat transfer relationships
2	1992	砂田 久一	名城大学	粉粒体の充填、凝集ならびに造粒に関する研究
3	1993	向阪 保雄	大阪府立大学	粉体粒子特にエアロゾル粒子の物性とその評価方法における顕著
				な業績
4	1994	江見 準	金沢大学	エアロゾルの濾過に関する研究
5	1995	宮南 啓	大阪府立大学	粉粒体を出発点とした機能性複合材料製造プロセスの開発
6	1996	湯 晋一	九州工業大学	固気混相乱流及び粉粒体力学に関する研究
7	1997	川島 嘉明	岐阜薬科大学	機能性粒子の設計工学の構築とその展開
8	1997	関口 勲	中央大学	造粒に関する研究
9	1998	増田 弘昭	京都大学	粉粒体ならびにエアロゾル微粒子の特性と挙動に関する研究
10	1998	仙名 保	慶応義塾大学	微粒子材料の調製と特性に関する物理化学的解析
11	1999	辻 裕	大阪大学	粉粒体および固気二相流の離散粒子シミュレーション
12	1999	金岡千嘉男	金沢大学	微小エアロゾル粒子の挙動と分離に関する研究
13	2000	篠原 邦夫	北海道大学	微粒子系素材の機械的・化学的調整プロセスの開発
14	2000	井上 明久	東北大学	アモルファス合金粉末の固化成形技術と新材料の開発
15	2001	山本 英夫	創価大学	粉体粒子の静電気現象の基礎的解明とその応用
16	2002	堀尾 正靭	東京農工大学	流動層工学の総合的展開、流動層技術の基礎的解明と応用範囲の
				拡大
17	2003	東谷 公	京都大学	液相微粒子分散系の安定性と表面微細構造に関する研究
18	2004	日高 重助	同志社大学	粉体シミュレーション法の開発とその応用
19	2004	花田 修治	東北大学	粉末プロセッシングによる新材料の創製
20	2005	福森 義信	神戸学院大学	流動層法による医薬品微粒子製剤の機能化に関する応用
21	2006	奥山喜久夫	広島大学	エアロゾルの基礎科学と材料合成プロセスの構築
22	2007	齋藤 文良	東北大学	メカノケミストリーの基礎と工学的応用に関する研究
23	2008	高橋 実	名古屋工業大学	セラミックス粉体成形の基礎的解明と材料創製への展開
24	2011	植松 敬三	長岡技術科学大学	粉体工学を基にしたセラミックス製造プロセス科学の基盤構築
25	2012	竹内 洋文	岐阜薬科大学	粒子設計を基盤とする新しい医薬品製剤に関する研究
26	2013	目 義雄	物質・材料研究機構	微粉体プロセスの高度化による高次構造制御体の創製
27	2014	大谷 吉生	金沢大学	エアフィルタを中心としたエアロゾルの分離・除去に関する研究
28	2015	牧野 尚夫	電力中央研究所	粉体工学を基礎とした炭素資源高度利用技術の研究開発
29	2016	阿尻 雅文	東北大学	超臨界水熱合成の発明

2023.12

事業概要

受賞	受賞年	KONA	賞受賞者	安娃
No.	西暦	氏名	所属 (申請当時)	木限
30	2017	Sotiris E.	Swiss Federal Institute	Pioneer research on particle formation, agglomerate dynamics and, in
		PRATSINIS	of Technology Zurich	particular, for placing flame aerosol technology on a firm scientific basis
			(ETH Zurich)	for scalable synthesis of nanomaterials
31	2018	Mojtaba GHADIRI	The University of	Contributions to the particle technology on linking the bulk powder
			Leeds	behavior, particle characterization and modelling with hosting the young
				scholars
32	2019	内藤 牧男	大阪大学	Contributions to powder processing technology for high quality
				advanced materials
33	2020	Brij M. MOUDGIL	The University of	Interfacial engineering of particulate system for enhanced performance
			Florida	
34	2021	Wolfgang	Friedrich-Alexander-	Particle based product innovations by understanding and controlling
		PEUKERT	University Erlangen-	particle interactions
			Nuremberg	
35	2021	松坂 修二	京都大学	Advanced characterization of fine particles and the development of
				novel powder handling systems
36	2022	神谷 秀博	東京農工大学	Particle adhesion and aggregation behavior characterization and control
37	2022	田中 敏嗣	大阪大学	Development of discrete particle modeling and simulations of gas-solid
				flows and granular flows
38	2023	Wiwut	Chulalongkorn	Contributions to the advancement of powder/particle and aerosol
		TANTHAPANICHAKOON	University & Tokyo	science and technology & promotion of bilateral collaboration between
			Institute of Technology	Thailand and Japan

List of KONA Awardees

2023.12.

No.	Year	Awardee	Affiliation
1	1990	Charles S. CAMPBELL	Univ. of Southern California
2	1992	Hisakazu SUNADA	Meijo Univ.
3	1993	Yasuo KOUSAKA	The Univ. of Osaka Prefecture
4	1994	Hitoshi EMI	Kanazawa Univ.
5	1995	Kei MIYANAMI	The Univ. of Osaka Prefecture
6	1996	Shin-ichi YUU	Kyushu Institute of Technology
7	1997	Yoshiaki KAWASHIMA	Gifu College of Pharmacy
8	1997	Isao SEKIGUCHI	Chuo Univ.
9	1998	Hiroaki MASUDA	Kyoto Univ.
10	1998	Mamoru SENNA	Keio Univ.
11	1999	Yutaka TSUJI	Osaka Univ.
12	1999	Chikao KANAOKA	Kanazawa Univ.
13	2000	Kunio SHINOHARA	Hokkaido Univ.
14	2000	Akihisa INOUE	Tohoku Univ.
15	2001	Hideo YAMAMOTO	Soka Univ.
16	2002	Masayuki HORIO	Tokyo Uni. of Agriculture & Technology
17	2003	Ko HIGASHITANI	Kyoto Univ.
18	2004	Jusuke HIDAKA	Doshisha Univ.
19	2004	Shuji HANADA	Tohoku Univ.
20	2005	Yoshinobu FUKUMORI	Kobe Gakuin Univ.
21	2006	Kikuo OKUYAMA	Hiroshima Univ.
22	2007	Fumio SAITO	Tohoku Univ.
23	2008	Minoru TAKAHASHI	Nagoya Institute of Technology

No.	Year	Awardee	Affiliation
24	2011	Keizo UEMATSU	Nagaoka Univ. of Technology
25	2012	Hirofumi TAKEUCHI	Gifu Pharmaceutical Univ.
26	2013	Yoshio SAKKA	National Institute for Materials Science (NIMS)
27	2014	Yoshio OTANI	Kanazawa Univ.
28	2015	Hisao MAKINO	Central Research Institute of Electric Power Industry (CRIEPI)
29	2016	Tadafumi ADSCHIRI	Tohoku Univ.
30	2017	Sotiris E. PRATSINIS	Swiss Federal Institute of Technology Zurich (ETH Zurich)
31	2018	Mojtaba GHADIRI	Univ. of Leeds
32	2019	Makio NAITO	Osaka Univ.
33	2020	Brij M. MOUDGIL	Univ. of Florida
34	2021	Wolfgang PEUKERT	Friedrich-Alexander Univ. Erlangen-Nürnberg
35	2021	Shuji MATSUSAKA	Kyoto Univ.
36	2022	Hidehiro KAMIYA	Tokyo Univ. of Agriculture & Technology
37	2022	Toshitsugu TANAKA	Osaka Univ.
38	2023	Wiwut TANTHAPANICHAKOON	Chulalongkorn Univ. & Tokyo Institute of Technology

1-2-2 自主事業の実施状況

当財団の初年度以来の年次別の実施状況は以下の通りである。本年度は自主事業として、年刊英 文学術誌 KONA Powder and Particle Technology の No. 41 (2024) を 2023 年末に予定通り印刷し、出 版すると共に、昨年度に引き続き粉体工学に関する講演討論会の第55 回を東京で開催した。

(経費単位:千円)

左由	西麻		粉体工学に関する講演討論会					KON	Α 誌の発行	
十反	四酒	回数	討論会テーマ	講演数	出席者	経費	号数	総頁数	発行部数	経費
H07	1995	29	粉体プロセスにおける安全・健康問題	5	232	3,360	13	240	2,300	7,730
H08	1996	30	先端機能性材料の製造プロセス	5	144	2,550	14	200	2,300	7,490
H09	1997	31	環境保全技術と粉体工学	6	142	3,750	15	254	2,200	7,500
H10	1998	32	最近の造粒と粒子設計―医療品/食品製造プロ セスを中心として―	6	210	4,630	16	256	2,200	8,190
H11	1999	33	新産業創出のための粉体工学	6	246	4,140	17	250	2,200	7,440
H12	2000	34	IT 産業における粉体工学	8	283	5,130	18	248	2,200	7,160
H13	2001	35	ナノ粒子材料への期待	7	184	3,750	19	283	2,200	7,990
H14	2002	36	ナノ粒子の産業界への展開	6	208	4,160	20	276	2,200	7,920
H15	2003	37	ナノパーティクル・テクノロジー	6	227	5,100	21	246	1,300	13,000
H16	2004	38	ナノ構造制御による粉体産業の発展をめざして	6	160	4,500	22	211	700	8,660
H17	2005	39	ここまで来たナノ粒子の実用化	7	205	5,380	23	224	1,000	10,070
H18	2006	40	ナノテク実用化の鍵を握るナノ粒子の制御と応 用	6	174	5,320	24	252	1,000	13,090
H19	2007	41	ナノパーティクル・テクノロジー:新市場開拓 と参入	6	167	4,380	25	303	1,000	11,460

事業概要

ÆÆ			粉体工学に関する講演討論会		KONA 誌の発行					
牛皮	四僣	回数	討論会テーマ	講演数	出席者	経費	号数	総頁数	発行部数	経費
H20	2008	42	ナノパーティクル・テクノロジー:応用・実用 化への新展開	6	126	3,400	26	282	1,000	8,040
H21	2009	43	ナノテクノロジーによる粉体の機能化と新材料 開発	6	160	3,130	27	248	600	6,250
H22	2010	44	ナノパーティクルハンドリング技術が生み出す 新材料	6	134	2,660	28	242	600	3,850
H23	2011	45	ナノパーティクルテクノロジーの構築と実用化 への展開		174	3,230	29	284	600	8,400
H24	2012	46	ナノパーティクルテクロジーの応用最前線	6	141	3,585	30	288	600	3,916
H25	2013	47	先端から基盤までを支える粉体工学の進歩	6	201	6,656	31	274	1,800	9,176
H26	2014	48	多様なものづくりを支える粉体工学の進歩	6	153	4,364	32	283	1,800	8,556
H27	2015	49	時代とともに歩む粉体工学	6	162	3,596	33	357	1,000	7,253
H28	2016	50	豊かな未来社会を築く粉体技術	6	156	5,169	34	293	1,100	7,417
H29	2017	51	先端材料創成に求められる粉体技術	6	161	3,942	35	287	1,100	7,386
H30	2018	52	粉体材料の合成および利用を支える粉体技術	6	161	4,657	36	297	1,100	7,093
R01	2019	53	高度化する粉体プロセスの基礎と応用の最前線	6	178	4,673	37	271	1,000	7,000
R02	2020	_	_	0	0	750	38	288	900	7,235
R03	2021	_	_	0	0	503	39	277	800	7,278
R04	2022	54	4 SDGs に貢献する粉体および粉体プロセスの 最前線		* 176	4,528	40	281	800	8,048
R05	2023	55	持続可能な社会に貢献する粉体技術	7	*237	4,743	41	286	700	7,718

*:ハイブリッド形式 (会場・オンライン出席者合計数)

◎ 第 55 回 粉体工学に関する講演討論会

テーマ:「持続可能な社会に貢献する粉体技術」

- 【日時】令和5(2023)年9月4日(月)午前10時00分~午後4時50分
- 【場所】東京ガーデンパレスならびにオンライン
- 【主催】公益財団法人 ホソカワ粉体工学振興財団
- 【企画】粉体技術談話会
- 【後援】ホソカワミクロン株式会社

第55回粉体工学に関する講演討論会が、令和5年9月4日(月)に東京ガーデンパレスにて開催された.本会では、最初に細川悦男理事長から、この講演討論会の開催経緯や当財団の国内外での粉体工学分野における活動などについて紹介された(図1).その後、KONA賞の贈呈式が行わ

事業概要

図1 細川理事長の開会挨拶

図2 KONA 賞授賞式にて(細川理事長と2名の KONA 賞受賞者, 左から神谷先生, 理事長, 田中先生)

図3 講演討論会会場風景

図4 懇親会風景

れ(図2),東京農工大学の神谷秀博教授並びに,大阪大学の田中敏嗣教授に KONA 賞の盾が手渡 された.その後,KONA 賞受賞 2 名による講演,昨年度 KONA 賞受賞者の京都大学松坂修二教授 による講演並びに,「持続可能な社会に貢献する粉体技術」をテーマとして,粉体工学・粉体技術 の基礎と応用の観点から4件の講演が行われた.講演会は,昨年に引き続きコロナウィルス感染に よる対策として普及したオンラインを使ったハイブリッド形式による開催となり,会場(図3)で 103人,オンラインで134人,合計 237人が参加し,昨年開催した第54回への参加人数176人を 大幅に超えることと成った.なお,本講演討論会の企画については,粉体技術談話会に委託して行 われた.又,講演討論会後に懇親会(図4)が開催された.

◎ 粉体工学に関する英文誌 KONA Powder and Particle Journal No. 41 (2024)の発行

KONA 誌の編集は粉体技術談話会に委託され,同談話会は KONA 誌編集委員会を組織してこの 編集に当たった. KONA 誌編集委員会はアジア,ヨーロッパ,アメリカブロックの3つの編集委 員会から構成されており,それぞれの地域より優れた粉体関連の論文(レビュー,研究報告)を集 め,これらを編集して年1回,KONA 誌として出版している.本年度は,令和5(2023)年末に KONA No.41(図5)として印刷物と電子ジャーナルが出版され,翌令和6(2024)年1月10 に発

事

業

概

要

行された. 推薦原稿 16編(アジア 5編, アメリカ 5編, ヨーロッパ 6編)および自由投稿 1 編を 併せて 17編の論文を掲載し, 700部を印刷し, 国内外の読者, 大学, 図書館などの関係者への寄 贈と共に, 財団ホームページ(https://www.kona.or.jp)に出版の案内を行い, 更に Web ジャーナル へ掲載した. なお,本誌の編集に際し,入稿・査読は全論文についてオンライン投稿審査システム (Editorial Manager: EM システム)が利用された. 論文のオンライン掲載について, J-STAGE の早 期公開(採択された記事を巻・号や開始ページ等が確定する前の段階で速やかに公開)機能を利用 し,印刷出版日より先に, 2022/12/29 ~ 2023/9/15の間に順次公開した. また,全見本を見直し, ヘッ ダ,見出し,図表番号と抄録等も含めて,フルカラーでの印刷と電子版で出版(図6,7)した. 本誌は 2013 年より J-STAGE に掲載が開始され, 2014 年 6 月に全てのバックナンバーの掲載が完 了しているが, No. 41 (2024)の論文,記事についても,令和 6 (2024)年 2月 29日に全文 HTML (XML)および PDF 形式でその掲載を完了した. このサイトでの KONA 誌の 1 日平均利用件数は, 加入当時(2013/12/20)の約 100件から 1100件を超え,通算利用件数は 270万件余りとなった. ま た,本年の本誌の学術雑誌評価指数インパクトファクター(JIF: Journal Impact Factor)は4.1(昨 年 3.919)と昨年よりも向上した.

また,JST からの参加要請を受けて,同機構が提供する研究データの共有と利活用を促進するためのリポジトリである J-STAGE Data (https://jstagedata.jst.go.jp/kona) に加入し,2021 年 7 月 20 日 に正式運用を開始し,現在 20 本の動画やエビデンスデータを公開中である.

さらに, KONA 誌は,世界最大級の各種の商用学術情報データベース(Web of Science, SCOPUS, Ei Compendex, JDream III, EBSCO, Cabells, J-GATE etc.) に収録されているほか,代表的なオープン アクセスジャーナルデータベース(J-STAGE, DOAJ, Google Scholar, CNKI, etc.) にも収録を拡大し てきた. さらに,昨年から英国工学技術学会(IET)提供のデータベース Inspec,韓国科学技術情 報研究所(KISTI)提供のデータベース NDSL(National Digital Science Library),米国大手情報コン テンツおよびテクノロジー企業 ProQuest 社が提供する図書館リソースの検索ディスカバリ・イン ターフェイス ProQuest にも収録を確認した.

事

業概

要

1-2-3 特定事業の実施状況

当財団は,1991年12月に日本ならびに世界の粉体工学の振興を目的として設立され,2021年に 設立30周年を迎えた.実際は平成4(1992)年度から本格的に事業を開始したため,実質的には 令和4(2022)年度が,当財団の設立30周年となっている.これを機会として,令和2(2000)年 3月に,財団設立30周年記念特定事業が立ち上げられ,下記の内容の事業が実施された.

・活動の内容

- APT (Asian Particle Technology) 2021 シンポジウム(令和3 (2021)年10月11日~14日, グ ランフロント大阪)での Young KONA Award の授与
- ② 財団設立 30 周年特別講演会(令和 4(2022)年 9 月 5 日,大阪)
- ③ ICCCI (第7回先進材料の界面制御と評価に関する国際会議) 2022 シンポジウム (令和4(2022) 年11月,山梨) での KONA Young Researcher Award, KONA Achievement Award の授与
- ④ 第4回国際ホソカワ粉体工学シンポジウム(令和5(2023)年9月14日,ドイツ)

(1) 第4回国際ホソカワ粉体工学シンポジウムの開催

令和5(2023)年9月14日(木)に The Hotel Dorint An der Kongresshalle(ドイツアウクスブル ク市)にて、第4回国際ホソカワ粉体工学シンポジウムが開催されました. 講演は、冒頭当財団の 理事であり、ホソカワミクロン社代表取締役細川晃平社長よりのウェルカムスピーチ(図8)から 始まり、「機能性粒子の持続可能な生産」をテーマとして、学術研究者による概説と共に様々な企 業とのコラボレーションによる8件の講演(図9)が行われた.

講演では、昨今話題と成っている細胞培地の連続生産設備による培養肉生産の将来性や、大豆タンパク質からプロテインを効率的に抽出する乾式・湿式技術の紹介、リチウムイオン電池のリサイクル技術と設備の紹介、レアアースの加工技術とネオジム磁石の性能との関係、二次電池材料として重要なグラファイトの新しい球形化設備の紹介並びに、日本のホソカワミクロン社の渡邊晃技術開発部長による、日本とドイツとの地政学的並びに文化的違いによる考え方の違いと日本での二次電池材料製造設備の変遷についての考察が紹介され、講演は、最後にホソカワアルピネAG社フェルナンデス社長による閉会挨拶で終了した。

図8 細川晃平社長のウェルカムスピーチ

図9 講演会風景

KONA

2. 役員等名簿 (令和6年3月)

理事長	細川 悦男	ホソカワミクロン(株) 取締役会長
常務理事	内藤 牧男	大阪大学名誉教授
理 事	鹿毛 浩之	九州工業大学 名誉教授
· <u> </u>	神谷 秀博	東京農工大学 副学長・教授
	後藤邦彰	岡山大学 教授
	白川 善幸	同志社大学教授
	竹内 洋文	岐阜 薬科大学 名誉教授・特任教授
	田中	大阪大学教授
	細川 晃平	ホソカワミクロン(株) 代表取締役社長
	牧野尚夫	電力中央研究所名誉研究アドバイザー
	松坂修二	京都大学教授
評議員	阿尻 雅文	東北大学 名誉教授
	猪ノ木雅裕	ホソカワミクロン(株) 取締役
	入谷 英司	名古屋大学 名誉教授
	齋藤 文良	東北大学 名誉教授
	目 義雄	物質・材料研究機構 参事役
	鈴木 道隆	兵庫県立大学 名誉教授
	中野 裕美	豊橋技術科学大学 副学長 · 教授
	三浦 秀士	九州大学 名誉教授
	森 康維	同志社大学 名誉教授
監事	奥山喜久夫	広島大学 名誉教授
	國分 博史	國分公認会計士事務所 所長
選考委員	市川 秀喜	神戸学院大学 副学長・教授
	蟹江 澄志	東北大学 教授
	加納 純也	東北大学 教授
	黒瀬 良一	京都大学 教授
	酒井 幹夫	東京大学 教授
	笹辺 修司	ホソカワミクロン(株) 事業部長
	瀬戸 章文	金沢大学 教授
	多々見純一	横浜国立大学 教授
	所 千晴	早稲田大学教授
	野村 俊之	大阪公立大学教授
	福井 国博	広島大学 教授
	藤 正督	名古屋工業大学 教授
	山本 浩充	愛知学院大学 教授
	脇原 徹	東京大学 教授
	綿野 哲	大阪公立大学 工学研究科長・教授
<u> </u>		
事務 局	问河原 栄	ホソカワ粉体工学振興財団 事務局長

3. 令和5年度 助成・褒賞事業

3-1 令和5年度 KONA 賞

(1名,賞状および副賞として100万円)

採択番号 No.	受賞者 Award recipient	所 属·役 職 (国籍) Affiliation / Position (Nationality)	業 績 Achievement	
		Emeritus Professor,	Contributions to the	
	Warnat	Talwa Institute of Tashnalagu	Advancement of Powder/	
HPTF23201	TANTHAPANICHAKOON	Fellow Royal Society of	and Technology & Promotion	
		Thailand; Technology Advisor,	of Bilateral Collaboration	
		SCG Chemicals PLC (Thailand)	iland) between Thailand and Japan	

◎ 受賞理由

ウィワット・タンタパニチャクーン博士は、50年近くにわたり、化学工学のみならず、粉体工 学やエアロゾル工学の発展に重要な役割を果たしてきた.彼の貢献は学術研究に留まらず、特にタ イと日本との協力関係の促進にも及んでいる.京都大学で化学工学を学んだ後、テキサス大学で博 士号を取得し、1978年にチュラロンコン大学に着任した.そして、タイ国立ナノテクノロジーセ ンター (NANOTEC)の初代エグゼクティブ・ディレクターを務め、後に東京工業大学教授となり、 2015年にはタイ人として初めて同校名誉教授に任命された.

また、日本学術振興会の客員研究員として、金沢大学、京都大学、東京工業大学に勤務し、エア ロゾル粒子の挙動をシミュレートする革新的なコンピューター・コードの開発、フィルター性能の 向上、ナノ粒子合成法の展開など、画期的な研究を行った.また、タイにおける粉体工学の総合的 な学問分野としての確立に極めて重要な役割を果たし、タイ粉体工学センター(TPTC)や粉体工 学卓越センター(CEPT) などの機関を設立した.

タンタパニチャクーン博士の貢献は学問の枠を超え,タイ日経済技術振興協会(TPA)などの専 門学協会でリーダーシップを発揮し,2009年にはTPAの会長に就任し,退任後間もなく,同協会 は国際交流基金賞を受賞している.なお,同氏の著作物としては,査読付き国際ジャーナル論文 300本以上,タイの技術書10冊などがある.

タンタパニチャクーン博士は、これらの粉体工学の発展に繋がる顕著な貢献により、KONA 賞の受賞に値するものと考えられる。

3-2 令和5年度 研究助成(19名, 総額1,900万円)

(五十音順, 敬称略)

採択番号	助成対象者	所 属·役 職*	研究課題	金 額 (万円)
HPTF23101	阿部 陽香	(国研)産業技術総合研究所計量標準総合センター・主任研究員	粉体測定に特化した球型熱伝導率測定 装置の開発	100
HPTF23102	岩田 浩明	京都大学大学院医学 研究科·特定准教授	AI を用いた医薬品添加剤粒子画像からの粉体物性予測	100
HPTF23103	小山 恵史	早稲田大学理工学術 院創造理工学部環境 資源工学科・講師	物理選別による汚泥焼却灰中の重金属 低減化	100
HPTF23104	小林慎一郎	 (公財)福岡県産業・ 科学技術振興財団有 機光エレクトロニク ス部・研究員 	局所誘導加熱法による金属ナノ粒子の 焼結化と物性評価	100
HPTF23105	新戸 浩幸	福岡大学工学部化学 システム工学科・教 授	微小プラスチックの環境微生物毒性の 評価とその制御	100
HPTF23106	周 偉偉	東北大学大学院工学 研究科・助教	高機能金属基複合材料の粉末開発と積 層造形技術の構築	100
HPTF23107	瀬川 浩代	 (国研)物質・材料 研究機構電子・光機 能材料研究セン ター・主幹研究員 	焼解によるセラミックスコンデンサか らの粉体再生技術	100
HPTF23108	高井 千加	岐阜大学工学部・准 教授	カブトムシ幼虫の粉体技術を利用した 糞の資源化	100
HPTF23109	田中 晶子	神戸薬科大学製剤学 研究室・講師	ペプチド性医薬品の脳標的鼻腔内投与 型粉末製剤の開発	100
HPTF23110	玉舘 知也	金沢大学理工研究域 フロンティア工学 系・助教	音速流ノズルとイオン誘起核生成を用 いた CO ₂ 分離	100
HPTF23111	長谷川拓哉	東北大学多元物質科 学研究所・講師	深共晶溶媒を反応場とする複合酸化物 粉体の作製	100

助成事

業

採択番号	助成対象者	所 属·役 職*	研究課題	金 額 (万円)
HPTF23112	林宏暢	 (国研)物質・材料 研究機構マテリア ル基盤研究セン ター・主任研究員 	溶媒分散型多孔質有機ナノシートの合 成と自己集積を伴う粉末化	100
HPTF23113	平尾 岳大	広島大学大学院先進 理工系科学研究科 · 助教	特異な分子認識による非多孔性空間空 隙粉体材料の開発	100
HPTF23114	平野 篤	 (国研)産業技術総 合研究所ナノ材料 研究部門・主任研 究員 	飲用水中の PFAS を高度に除去するジ ルコニア粒子の創製	100
HPTF23115	三谷 亮介	慶應義塾大学大学院 理工学研究科・特任 助教	数値シミュレーションによる帯電性粒 子の肺内沈着挙動の解析	100
HPTF23116	森 浩亮	大阪大学大学院工学 研究科・准教授	ハイエントロピー合金のナノ粒子化と 新奇触媒機能探索	100
HPTF23117	柳下 崇	東京都立大学大学院 都市環境科学研究 科・教授	バレル電解エッチングによる多孔性 Al 微粒子の形成	100
HPTF23118	鷲野 公彰	大阪大学大学院工学 研究科・講師	非球形粒子集合体と流体の相互作用に ついての研究	100
HPTF23119	CAO, Kiet Le Anh	広島大学大学院先進 理工系科学研究科・ JSPS 外国人特別研 究員	高効率な CO ₂ 変換のための革新的な 多孔性材料の開発	100

* 所属・役職は申請時点

採択番号	受賞者		所 属・役 職 *	業 績	金 額 (万円)		
LIDTE22201	沉涅	睪 智典	広島大学大学院先進理工	界面特性に着目した微粒子ハン	50		
ПР1Г25501	休住		系科学研究科・准教授	ドリングの高度化	50		
LIDTE22202	11+	十五	同志社大学理工学部・准	界面現象を利用したアクティブ	50		
ПР1Г25502	山平 八音		TF25502 山平 人音		教授	マター系の創出に関する研究	50
LIDTE22202	2202 就职 八立		大阪大学大学院工学研究	離散要素法における汎用粗視化	50		
ПР1Г25505	爲玎	ムや	科・講師	モデルの開発	50		

3-3 令和5年度 ホソカワ研究奨励賞(3名,総額150万円)

*所属・役職は申請時点

3-4 令和5年度 研究者育成(5名,総額150万円)

採択番号	援助対象者	所 属*	研究課題	研究指導者*	金 額 (万円)
HPTF23501	赤井 亮太	大阪大学大学院工学研 究科・応用化学専攻	有機塩の結晶粉末によ る有機半導体の抜本的 な性能向上	藤内 謙光	30
HPTF23502	今吉 優輔	大阪公立大学大学院工 学研究科物質化学生命 系専攻·化学工学分野	微視構造評価による粉 体の高速圧縮成形メカ ニズム解明	大崎 修司	30
HPTF23503	巽 由奈	東京工業大学大学院物 質理工学院・応用化学 系応用化学コース	脂肪酸を用いた医薬品 共結晶の形成と薬物溶 解性の制御	下山 裕介	30
HPTF23504	山崎 理子	横浜国立大学大学院理 工学府化学・生命系理 工学専攻	非水系窒化物スラリー の凍結乾燥造粒	多々見純一	30
HPTF23505	HO, Thi Thanh Nguyen	広島大学大学院先進理 工系 科学研究科・化 学工学プログラム	多孔質セラミックス担 体による高耐久性電極 触媒の開発	荻 崇	30

*所属・研究指導者は申請時点

採択番号	援助対象者	所属・役職	主催機関名	シンポジウム等の名称	会期	金 額 (万円)
HPTF23001	酒井 幹夫	 (一社) 粉体 工学会 計算 粉体力学研究 会・世話人 	(一社) 粉体 工学会	International Symposium on Powder Technology: Realization of Digital Twins for Powder Processes 粉体工学国際シンポジウ ム:粉体プロセスのデジ タルツインの実現	2024/5/14 ~ 15	50
HPTF23002	瑞慶覧章朝	神奈川工科大 学工学部電気 電子情報工学 科・学科長・ 教授	第17回国際 電気集じん会 議現地実行委 員会	17th International Conference on Electrostatic Precipitation(ICESP 2024)第17回国際電気 集じん会議	2024/10/28 ~ 31	50

3-5 令和5年度 シンポジウム等開催援助(2件,総額100万円)

4. 研究成果等報告

4-1 令和3年度 研究助成成果報告 目次

採択番号	報告者		所属	研究課題	頁
HPTF21101	石神	徹	広島大学大学院先進理工系 科学研究科・准教授	マスク内エアロゾル挙動の数値解 析と微細構造最適設計	27
HPTF21102	石川	善恵	(国研) 産業技術総合研究所 電子光基礎技術研究部門 · 主任研究員	微小溶融液滴の高速冷却による非 平衡結晶性粉体の合成	34
HPTF21103	伊藤	貴章	岐阜薬科大学薬物送達学大 講座・助教	電界紡糸マットを用いた中空多孔 吸入粉末剤の調製	39
HPTF21104	梅本	和輝	山形大学大学院理工学研究 科・研究支援者	超音波ビーズミルによる量子ドッ トの合成	46
HPTF21105	大熊	学	(国研)物質・材料研究機構 構造材料研究センター・主任 研究員	加圧焼結による欠陥収縮過程の放 射光 X 線 CT 観察	52
HPTF21106	大崎	修司	大阪公立大学大学院工学研 究科・准教授	固体電解質ナノ粒子の生成メカニ ズムの解明と高速合成	58
HPTF21107	尾関	哲也	名古屋市立大学大学院薬学 研究科・教授	mRNA ワクチン吸入剤プラット フォーム技術の萌芽研究	65
HPTF21108	加藤	邦彦	名古屋工業大学先進セラ ミックス研究センター・特 任助教	半導体ナノ表面のマイクロ波プラ ズマ改質と高機能化	69
HPTF21109	北村	研太	法政大学生命科学部・助手	均質な多成分粒子ペーストの調製 に関する基礎研究	76
HPTF21110	久志ス	本 築	東北大学多元物質科学研究 所,助教	ボールミル中の粒子固着機構の解 明	82
HPTF21111	河府	賢治	日本大学理工学部・教授	超音波振動による気相中懸濁微粒 子の挙動制御および集塵	86
HPTF21112	関本	敦	岡山大学大学院環境生命自 然科学学域・准教授	矩形ダクト流路内の粒子挙動の制 御	93

成果報告

採択番号	報告	吉者	所 属	研究課題	頁
HPTF20106*	高井	千加	岐阜大学工学部・准教授	有機無機複合材料の機能性を支配 する界面構造設計	99
HPTF21114	劒	隼人	大阪大学大学院基礎工学研 究科・准教授	光触媒特性を示す酸化鉄の分子状 ナノ粒子合成	103
HPTF21115	冨樫	貴成	山形大学理学部・准教授	ナノ粒子完全無溶媒精密合成を可 能とする金属錯体開発	107
HPTF21116	中澤	光	東北大学大学院工学研究科・ 准教授	光照射で酵素の活性を向上するス キャフォールド粉体の開発	112
HPTF21117	中島	佑樹	(国研)産業技術総合研究所 マルチマテリアル研究部門・ 主任研究員	表面形成ラジカルを利用したポリ マー被覆技術の開発	117
HPTF21118	根岸	淳	信州大学学術研究院繊維学 系・准教授	CIP 成型を用いた新規細胞外マト リックス材料の開発	122
HPTF21119	橋本	雅彦	同志社大学大学院理工学研 究科・教授	単分散 PLGA ナノ粒子の用時調 製技術の開発	127
HPTF21120	堀口	元規	東京農工大学大学院グロー バルイノベーション研究院・ 助教	多様な燃焼灰粒子の高温付着性を 制御する薬剤の開発	134
HPTF21121	松岡	光昭	関西大学環境都市工学部 · 准教授	ジオポリマーを用いる重金属の固 定化プロセスの構築	140
HPTF21122	鱒渕	友治	北海道大学大学院工学研究 院・准教授	高結晶な酸窒化物微粒子のフラッ クス合成	146
HPTF21123	松井	淳	山形大学理学部・教授	湿度で可逆的に構造変形する人工 まつかさ	151
HPTF21124	村田	秀信	大阪公立大学工学研究科 · 助教	粉体特性値を用いた DEM 用物理 パラメータ推定法の開発	156

採択番号	報告者	所 属	研究課題	頁
HPTF21125	渡邉 貴一	岡山大学学術研究院環境生 命自然科学学域・准教授	スラグ流を反応場としたコアシェ ル型微粒子の高速合成	161
HPTF21126	McNAMEE, Cathy Elizabeth	信州大学繊維学部·教授	磁気欠陥が制御された磁性ナノ粒 子薄膜	166

*著者都合により HPTF21113 と掲載順を入れ替えた.

4-2 令和4年度 研究者育成成果報告 目次

採択番号	報告者		所属	研究課題	推薦者		頁
HPTF22501	有馬	誉	京都大学大学院工学研 究科化学工学専攻	体積膨張する多孔性錯体 の変形阻害と吸着挙動制 御	渡邉	折口	172
HPTF22502	巌	元志	大阪公立大学大学院工 学研究科物質化学生命 系専攻	全固体電池用硫黄/多孔 質炭素溶融混練プロセス の解析	仲村	英也	177
HPTF22503	大毛	瑞貴	山形大学大学院理工学 研究科理学専攻	ミクロ相分離両相を用い る異種ナノ粒子の自在集 積	松井	淳	181
HPTF22504	大島	一輝	大阪公立大学大学院工 学研究科物質化学生命 系専攻	多孔性錯体微粒子への薬 物包接メカニズムの解明	大崎	修司	187
HPTF22505	大津	智隆	大阪公立大学大学院工 学研究科物質化学生命 系専攻	湿潤粉体流れの数値シ ミュレーションの基礎的 研究	仲村	英也	192
HPTF22506	黒田	啓真	横浜国立大学大学院理 工学府化学・生命系理 工学専攻	OCT その場観察に基づ くスラリーの乾燥挙動の 解明	多々見	包純一	197
HPTF22507	七條	慶太	九州大学大学院工学研 究科応用化学専攻	生体関連錯体を複合化し た粉体光触媒による CO ₂ 還元反応	嶌越	恒	202

採択番号	報告者	所属	研究課題	研究指導者		頁
HPTF22508	山野井慶彦	横浜国立大学大学院理 工学府化学・生命系理 工学専攻	複雑形状多孔質セラミッ クス部材の高速製造法の 開発	飯島	志行	207
HPTF22509	LE, Phong Hoai 広島大学大学院先進理 工系科学研究科・先進 理工系科学専攻		粒子内部の相互接続ナノ ポアを駆使した環境触媒 の開発	荻	崇	212
HPTF22510	SEPTIANI, Eka Lutfi	広島大学大学院先進理 工系科学研究科・先進 理工系科学専攻	気中でのコアシェル型金 属微粒子の精密合成と特 性評価	荻	崇	217

4-3 令和4年度 シンポジウム等開催援助成果報告 目次

採択番号	報告者	所属	シンポジウム等の名称	頁
HPTF22001	多々見純一	横浜国立大学教授	先進セラミックスの粉体プロセスに関す る第 2 回国際シンポジウム (The 2nd International Symposium on Powder Processing Technology for Advanced Ceramics (ISPPTAC-2))	224

4-1 令和3年度研究助成成果報告

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 27-33 /https://doi.org/10.14356/hptf.21101

HPTF21101

マスク内エアロゾル挙動の数値解析と微細構造最適設計

Numerical Analysis of Aerosol Behavior in Facemask and Optimization of Microstructure

研究代表者 Research leader: 石神 徹

徹 Toru ISHIGAMI

広島大学大学院先進理工系科学研究科 准教授 Graduate School of Advanced Science and Engineering, Hiroshima University, Associate Professor E-mail: ishigami@hiroshima-u.ac.jp

抄 録

本研究では、フェイスマスク微細構造内におけるサブミクロンサイズの粒子挙動を明らかにするために、実際のフェイスマスクのX線CT画像を連携した数値シミュレーションモデルを開発した. 微細構造内部に大きな細孔が存在すると、当該部近傍で流線が湾曲し、その流れに同伴する粒子が 細孔表面で捕集されやすくなることがわかった。細孔の存在は、圧力損失と捕集率の低下をもたら すものの、上記の効果により捕集率の低下が抑制されるため、フェイスマスクの性能(quality factor)を向上させることがわかった.

ABSTRACT

In this study, a numerical simulation model was developed in conjunction with X-ray CT (computed tomography) images of actual facemasks in order to clarify the behavior of submicron-sized particles in the facemask microstructure. It was found that the presence of large pores inside the microstructure caused streamlines to curve near the facemask domain, and particles accompanying the streamlines were more likely to be collected on the pore surface. Although the presence of pores results in a decrease in a pressure drop and the collection efficiency, the above effect suppresses the decrease in the collection efficiency and thus improves the performance (quality factor) of the facemask.

研究背景と目的

繊維状フィルタの一種であるフェイスマスク は捕集性能が高く運用コストが低いことから, 感染症の予防や汚染物質の除去などに広く用い られている.近年 COVID-19の流行に伴い,フェ イスマスクによるエアロゾルの捕集機構につい て,流体力学的視点から多くの研究が報告され ている.フェイスマスクの外部や周囲のエアロ ゾルの流れ,および粒子の捕集機構に着目した 先行研究が多数存在する.フェイスマスクをは じめとするエアフィルタでは,捕集効率に粒子

Copyright © 2024 The Author. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

サイズ依存性があることが知られており,サブ ミクロンサイズの捕集効率が極小値を取ること が知られている.これは,単繊維ろ過理論より, 慣性捕集と拡散捕集の捕集効率が共にサブミク ロンサイズ領域で低下するためであると説明さ れる.一方,フェイスマスク内部のエアロゾル の流れの詳細はよく知られていない.数値シ ミュレーションを用いて微細構造内の流れを解 析する研究も行われているが,これらの研究で は微細構造を単純化したモデルマスクが用いら れており,現実のマスクとは異なる.したがっ て,未だにエアフィルタの微細構造の最適化は 行われていない.

一方,当研究グループでは,X線 CT や FIB-SEM などの画像解析を用いて多孔質体の微細 構造の3次元画像を取得し,その数値的に取得 した微細構造に対して粉体や混相流シミュレー ションを行う方法を開発してきた(Rozy et al., 2020; Ueda et al., 2020).この方法の特徴として, 実際の多孔質体に極めて近い微細構造の中の流 れ場や個々の粒子挙動を詳細に解析できる点が 挙げられる.

本研究では, X線 CT により取得した実際の マスクの3次元画像を連携したシミュレーショ ンにより, 微細構造内部のエアロゾルの流れの 再現および捕集機構の解明を行う. さらに, こ れを通じてフェイスマスクの最適な微細構造に ついて議論を行う.

研究方法

1. 数值計算手法

本研究では、捕集率が低いことで知られるサ ブミクロンサイズの粒子を対象とする.この場 合、フィルターの繊維径(数 μ m ~数+ μ m) よりも粒子径の方が顕著に小さいため、流体シ ミュレーションは粒子スケールでは解像しな い.本研究では、CFD (Computational Fluid Dynamics)とDPM (Discrete Phase Method)を 1-wayでカップリングした CFD-DPM を用いた. 流体運動は3次元定常非圧縮性流体の連続の式 と Navier-Stokes 方程式を用いて計算を行う.

$$\nabla \cdot \mathbf{u} = 0 \tag{1}$$

$$\mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}} \right] + \mathbf{g} + \mathbf{f} \quad (2)$$

ここで**u**は速度ベクトル, ρ は密度, pは圧力, η は粘度, **g**は重力加速度である.式(2)の右 辺第4項の**f**は速度強制項と呼ばれ,固体流体 間相互作用を表す(Kajishima et al., 2001).体 積力強制型の埋込境界法では,固体領域(この 場合はフィルターの繊維)のセル内固体体積分 率 α (0 $\leq \alpha \leq 1$)を見積もる.埋込境界法では α を用いて,体積平均速度を以下のように定義 する.

$$\mathbf{u} = (1 - \alpha)\mathbf{u}_{\mathrm{f}} + \alpha \mathbf{u}_{\mathrm{s}} \tag{3}$$

ここで、 \mathbf{u}_{f} は流体速度、 \mathbf{u}_{s} は固体速度である. 固体流体間相互作用は固体領域の速度を固体速 度 \mathbf{u}_{s} に修正するために、以下の式で表される.

$$\mathbf{f} = \frac{\alpha \left(\mathbf{u}_{s} - \mathbf{u}^{*}\right)}{\Delta t} \tag{4}$$

ここで、u*は式(1)と(2)において、速度 強制項を付与せずに計算して得られた速度であ る.この方法を採用する理由は、固体表面で境 界条件を設定することなく、単純な直交格子で すべりなし境界を容易に表現するためであり、 繊維フィルターの微細構造のような複雑な形状 を有する固体の表現に適した方法であるといえ る.

サブミクロン粒子の運動は,以下の運動方程 式を用いて計算を行う.

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{p}}}{\mathrm{d}t} = \frac{18\eta}{D_{\mathrm{p}}^{2}\rho_{\mathrm{p}}C_{\mathrm{c}}} (\mathbf{u} - \mathbf{u}_{\mathrm{p}}) + \frac{\mathbf{g}(\rho_{\mathrm{p}} - \rho)}{\rho_{\mathrm{p}}} + \mathbf{G}\sqrt{\frac{\pi S_{0}}{\Delta t}}$$
(5)

ここで、*D*_pと*ρ*_pはそれぞれ粒子径と粒子密度 である。右辺第一項は流体抗力であり、ここで は気相中におけるサブミクロン粒子の運動を扱 うため、カニンガムの補正係数*C*_cを考慮して いる.右辺第三項はブラウン運動を表しており、 ランダム・ウォークをホワイトノイズでモデル 化する. S_0 はパワースペクトル密度である.**G** は平均値 0,分散 1 の標準偏差分布に従う確率 変数である.

2. X 線 CT イメージング (Rozy et al., 2020)

実際の繊維状フィルターの微細構造を取得す るために, X線CT (TDM1000H-Sµ, ヤマト科 学(株))を用いた. ここでは市販の N95 マス クとサージカルマスクをサンプルとして使用し た. 分解能 1 µm/voxel にて CT スキャンを実施 した.得られた画像は,Photoshop ならびに Image J, Fiji を用いて、ノイズ除去、二値化、 表面平滑化を行った. その後, 各ボクセルの輝 度値を,埋込境界法で用いる固体体積分率αに 線形変換した.なお、得られた CT 像を確認し たところ,両フェイスマスクとも繊維群の配置, 配向.局所空隙率等の微細構造の空間分布にば らつきが大きいことがわかった.一方,本シミュ レーションは、繊維まわりの流れを高解像度で 計算を行うため、計算負荷の制限から Representative Elemental Volume (多孔質体の巨視的 な物性を表すために最低限必要な微細構造の大 きさ) (Zhang et al., 2000) まで計算領域を大き くすることができない. そこで, 得られた CT 像の中から、ランダムに3か所ずつ領域をサン プリングしてシミュレーションに用いた. サー ジカルマスクと N95 マスクのフィルター領域 をそれぞれ S1~3, N1~3と称する.

粒子の捕集判定には、符号付き距離関数 (SDF: Signed Distance Function)を用いた、著 者らが以前の研究で開発した方法 (Rozy et al., 2021)により、固体体積分率の場から SDF の 場を構築した、粒子中心における SDF を ϕ_p と すると、表面間距離のΔは以下のように表さ れる.

$$\Delta = \phi_{\rm p} - 0.5D_{\rm p} \tag{6}$$

△ ≤ 0 を満たしたとき, 粒子が繊維に接触した とみなし粒子をその場で停止させた. なお, サ ブミクロン粒子では, 流体抗力よりもさえぎり, 拡散ならびに van der Waals 力が支配的に働き, 捕集後再飛散しないことが報告されているため (Lee and Liu, 1982), この処理は妥当であると 考えられる.

3. 計算条件

X線CT像から抽出したフィルター領域の前後に繊維がない流体領域を設置し、計算領域とした.定常の速度場と圧力場を求めた後、400個の粒子を初期速度0.1ms⁻¹でフィルター領域に供給した.なお、ブラウン運動は、乱数の値により異なるため、粒子挙動や捕集率に影響を及ぼす可能性がある.そこで、捕集率を計算する際は、異なる乱数の値で粒子運動を10回計算し、平均値と標準偏差を求めた.

研究成果

1. 解析結果

領域 S1 と N1 における代表的な粒子 25 個の 透過挙動を図1に示す.見やすさのために粒子

Fig. 1 Time series snapshots of particles for $D_p = 0.3 \ \mu m$ through facemask microstructures: (a) S1 and (b) N1. For ease of observation, the particle size is shown ~60 times larger than the actual particle size.

サイズをおよそ 60 倍に拡大して示した. S1 の 計算開始時では、粒子はフィルター領域にほぼ 直進しているが、その後に粒子がフィルター領 域を通過する際は、速度の高い粒子がいくつか 観察された、これは、微細構造中の繊維によっ て流路面積が小さくなったために流体および粒 子が加速されたためであると考えられる. t= 0.005 s においては、フィルター領域を通過し た粒子とフィルター領域に残った粒子の両方が 観察された. 最終的に, 多くの粒子はフィルター 領域を透過し計算領域の出口境界に到達した が、少数の粒子は繊維によって捕集された.領 域 S1 と N1 においてすべての粒子の捕集また は透過に要した時間はそれぞれ 0.0105 s, 0.013 s であった.これは、領域 N1 の空隙率が低いた めに、繊維近傍での粒子の減速が高い頻度で発 生したことで領域 S1 よりも捕集あるいは透過 に時間を要したためだと考えられる. 同様の現 象は、先行研究 (Rozy et al., 2021) における粒 子捕集に関する数値シミュレーションでも観察 されている. 0.3 µm, 1.25 µm の 2 通りの粒子 径において、各計算領域における捕集率 n を算 出した.シミュレーションにより得られた捕集 率nと圧力損失 Δp の関係を2に示す. 図より、 概ね線形関係が得られており、従来研究で知ら れているようにトレードオフの関係であること がわかる.

より詳細に性能評価を行うために、この2つ の指標を統合した性能指標 quality factor, *QF* を

Fig. 2 Relationship between collection efficiency and pressure drop for different facemask domains and for different particle diameters: (a) 0.3 μm and (b) 1.25 μm.

求めた.

$$QF = -\frac{\ln\left(1-\eta\right)}{\Delta p} \tag{7}$$

各粒子径・各計算領域における QF の値を表1 に示す.計算領域ごとに QF を比較すると、い ずれの粒子径においても計算領域 N1 の QF が 高かった. そこで, 計算領域 N1 は捕集に有利 な特徴を有しているのではないかと考え、N1 における捕集の様子を詳細に観察した.図3は、 粒子径 0.3 µm の粒子を計算領域 N1 と N3 に供 給した際のスナップショットである.計算領域 N1 は主流方向の大きな貫通孔を有していた. 捕集された粒子の多くは、この大きな細孔に引 き寄せられるように移動し、細孔近傍の繊維で 捕集された.一方で、大きな細孔をもたない計 算領域 N3 では、このような捕集は観察されな かった.このことから、微細構造中の大きな細 孔,あるいは局所的な粗密構造が捕集を促進す る可能性があるのではないかと考えた.この仮

Table 1 Quality factor of each face-mask domain for
different particle diameters D_p .

d	lifferent	particle c	liameters	SD_{p} .			
$D_{\rm p}$	$QF imes 10^2 [\mathrm{Pa}^{-1}]$						
[µm]	S 1	S2	S3	N1	N2	N3	
0.3	3.758	2.593	3.456	3.225	2.882	2.498	
1.25	4.046	4.516	3.781	4.778	4.106	3.789	
(a)	x (z: Main flor	y w direction)	t = 0 s	ore	t = 0.0125 s	THE.	
(b)			<i>t</i> = 0 s	A CAR	t = 0.0145 s		

Fig. 3 Initial and collected positions of particles in (a) N1 and (b) N3. Only particles collected on the fiber are shown. For ease of observation, the particle size is shown ~ 60 times larger than the actual particle size.

説を検証するため、計算開始から捕集されたと きまでに、捕集された粒子が*xy*方向に移動し た距離*L_{xy}*を求めた.その結果、大きな細孔を 有するN1領域では、細孔近傍で捕集された粒 子の*L_{xy}の値が顕著に高いことがわかった(*図 4).繊維が密集した領域は流動抵抗が大きいた めに、流体はそのような領域を避け、より流動 抵抗の低い細孔へ移動する.その際に、粒子が 主流方向と垂直な方向に流れることで滞留時間 が増加し、繊維表面と接触する確率が高くなっ たと考えられる.これは、微細構造内の局所的 な粗密構造が流体と粒子を引き寄せることで捕 集率を増加させる可能性を有することを示唆し ている.

2. モデルマスクによる検討

細孔の影響のみを独立的に検討するため、モ デルマスクを用いた検証を行った.ここでは、 x方向を長さ方向とする繊維とy方向を長さ方 向とする繊維を主流方向(z方向)に交互に並 べることで作成した.繊維径はサージカルマス

Fig. 4 Distribution of travel distance of collected particles in the *xy*-direction L_{xy} of N1.

ク, N95の繊維径より 22 µm とし、繊維の中心 間距離は 62.5 µm とした. x 方向繊維と y 方向 平衡繊維はそれぞれ千鳥状になるよう配置し た.ここに、主流方向に貫通した円柱状の細孔 を作成することにより、モデルマスクを作成し た.細孔径は 50,75,100,150,200 µm の 5 段階に変化させた.これらをそれぞれ MF-50, 75,100,150,200 と称する.また、細孔がな いモデルマスクを作成し、これを MF-NP とし た.

モデルマスク領域を用いたシミュレーション により得られた圧力損失と捕集率の関係を図5 に示す. 圧力損失と捕集率の関係はX線CTに より得られたマスク領域と同様に概ね線形であ り,粒子径が大きいほど高い捕集率が得られた. また,モデルマスク領域の細孔径が大きいほど 圧力損失と捕集率は低下した.モデルマスクの 細孔径とQFの関係を表2に示す.細孔のない MF-NPではQFは比較的低かった一方で,細 孔の大きいMF-150においてQFの値は最大値 を示した.これは,大きな細孔の存在により圧 力損失と捕集率が減少する一方で,先述した細 孔が粒子を引き寄せる効果により捕集率の減少

 Table 2
 Quality factor of each model face-mask domain for different particle diameters D_n

<i>D</i> _p [μm]	$QF imes 10^2$ [Pa ⁻¹]					
	MF-NP	MF-50	MF-75	MF-100	MF-150	MF-200
0.3	2.530	2.318	2.935	3.168	3.560	2.999
1.25	4.103	3.573	4.471	4.841	5.773	3.398

研

究

助

成

が抑制されたことで *QF* が増加したと考えられる.また,さらに細孔の大きい MF-200 において *QF* は減少した.この傾向は粒子径 1.25 µm においてより顕著にみられた.これは,粒子径の増加により細孔付近において慣性力効果やさえぎり効果による粒子捕集が促進されたためであると考えられる.

粒子径 0.3 µm における各領域の粒子の捕集 数と L_{xv} の関係を図6に示す。細孔径が大きく なるほど捕集率は減少した. MF-NP ではほと んどの粒子が $L_{xv} < 10 \ \mu m$ であったが, MF-50 では $L_{xy} < 10 \mu m$ の粒子は著しく減少し、 L_{xy} が 10~20 µm の粒子の個数が最大となった. さ らに細孔径が大きくなると、L_{xy}の高い粒子が より回収された. 一方で,細孔の大きな MF-150 や MF-200 では小さな L_{xy}の粒子がほとん ど確認されなかった.細孔から離れた粒子は引 き寄せられて捕集されるのに対して、細孔付近 の粒子は捕集されずに細孔内部を透過したため であると考えられる.以上のことから、マスク 領域中の大きな細孔により、流れとともに粒子 が細孔表面に接近して捕集されること、ならび にその細孔径には最適値が存在することが示唆 された. また,細孔の存在により, 圧力損失と 捕集率はともに低下するものの、この捕集効果 により捕集率の低下が抑制され、その結果 QF が向上する可能性があることがわかった.

Fig. 6 Distribution of travel distance of collected droplets (D_p = 0.3 μm) in the xy-plane L_{xy} with different model facemask domains: (a) MF-NP, (b) MF-50, (c) MF-75, (d) MF-100, (e) MF-150, and (f) MF-200.

3. 結論

本研究では、フェイスマスク内部におけるサ ブミクロンサイズの粒子挙動を明らかにするた めに、市販のフェイスマスクのX線CT画像を 連携した数値シミュレーションモデルを構築し た.フェイスマスク微細構造内部における粒子 捕集挙動の観察と性能解析の検討から、以下の 結論を得た.

フェイスマスクの微細構造では、大きな細孔 (局所的な粗密構造)により縮流が形成される. マスク領域を透過する際に粒子が繊維表面と接 触する確率は、主流と直交する方向の流れが流 線を長くし滞留時間を長くするため、高くなる. その結果、孔近傍の繊維に捕集される.

細孔は圧力損失と捕集効率の低下をもたらす が、上記の細孔による捕集効果により捕集効率 の低下を抑えることができる. 適切な大きさの 孔によってフェイスマスクの性能(quality factor)が向上することが示唆された.

本研究は、フィルターの微細構造が捕集メカ ニズムに及ぼす影響についての理解を深めるこ とに貢献した.将来的には、様々なシナリオに おける過渡的な吸気と呼気を反映するために、 より現実的な入口境界条件を検討する予定であ る.

参考文献

- Kajishima T., Takiguchi S., Hamasaki H., Miyake Y., Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding, JSME International Journal Series B Fluids and Thermal Engineering, 44 (2001) 526–535. https://doi.org/10.1299/jsmeb.44.526
- Lee K.W., Liu B.Y.H., Theoretical study of aerosol filtration by fibrous filters, Aerosol Science and Technology, 1 (1982) 147–161.

https://doi.org/10.1080/02786828208958584

Rozy M.I.F., Maemoto Y., Ueda M., Fukasawa T., Ishigami T., Fukui K., Sakai M., Mino Y., Gotoh K., Direct numerical simulation of permeation of particles through a realistic fibrous filter obtained from X-ray computed tomography images utilizing signed distance function, Powder Technology, 385 (2021) 131–143.

https://doi.org/10.1016/j.powtec.2021.02.072
- Rozy M.I.F., Ueda M., Fukasawa T., Ishigami T., Fukui K., Direct numerical simulation and experimental validation of flow resistivity of nonwoven fabric filter, AIChE Journal, 66 (2020) e16832. https://doi.org/10.1002/aic.16832
- Ueda M., Rozy M.I.F., Fukasawa T., Ishigami T., Fukui K., Phase-field simulation of the coalescence of droplets permeating through a fibrous filter obtained from X-ray

外部発表成果

論文発表

- Hada K., Shirzadi M., Fukasawa T., Fukui K., Ishigami T., Numerical simulation of aerosol permeation through microstructure of face masks coordinating with X-ray computed tomography images, AIP Advances, 12 (2022) 125119. https://doi.org/10.1063/5.0129087
- Shirzadi M., Fukasawa T., Fukui K., Ishigami T., Prediction of submicron particle dynamics in fibrous filter using deep convolutional neural networks, Physics of Fluids, 34 (2022) 123303. https://doi.org/10.1063/5.0127325
- Shirzadi M., Fukasawa T., Fukui K., Ishigami T., Application of deep learning neural networks for the analysis of fluid-particle dynamics in fibrous filters, Chemical Engineering Journal, 455 (2023) 140775.

https://doi.org/10.1016/j.cej.2022.140775

口頭・ポスター発表

 波田 航大,河島 健太, Irwan M. Rozy F., Shirzadi M.,深澤 智典,福井 国博,石神 徹, computed tomography images: effect of the filter microstructure, Langmuir, 36 (2020) 4711–4720. https://doi.org/10.1021/acs.langmuir.0c00640

https://doi.org/10.1021/acs.talightun.0c00040

Zhang D., Zhang R., Chen S., Soll W.E., Pore scale study of flow in porous media: scale dependency, REV, and statistical REV, Geophysical Research Letters, 27 (2000) 1195–1198. https://doi.org/10.1029/1999GL011101

"X線CTを連携したフェイスマスク内のエアロゾル透過シミュレーション",粉体工学会春期研究発表会(Himeji, May 18, 2022).

- 石神 徹, 波田 航大,河島 健太, Irwan M., Rozy F., Shirzadi M., 深澤 智典,福井 国博, Mirzaei P.A., "フェイスマスク内エアロゾル 透過挙動に対する微細構造の影響評価に関 する数値シミュレーション",混相流シンポ ジウム 2022 (Tokyo, August 20, 2022).
- Ishigami T., "Direct numerical simulation of granular and multiphase flows through filter microstructures obtained by image analysis", 7th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI2022) (FujiYoshida, Nov. 16, 2022) 1-IV-F-02.
- 石神 徹, "画像解析を連携した数値シミュレーションによるフィルタ内粒子流体挙動と性能の解析",日本粉体工業技術協会2022年度第2回集じん分科会(Kyoto, March 1, 2023).
- Hada K., Mohammadreza S., Fukasawa T., Fukui K., Ishigami T., "Numerical analysis of aerosol capturing behavior in face masks obtained by X-ray CT", The 11th International Conference on Multiphase Flow (ICMF2023) (Kobe, April 2–7) P20.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 34-38 /https://doi.org/10.14356/hptf.HPTF21102

HPTF21102

微小溶融液滴の高速冷却による非平衡結晶性粉体の合成

Non-Equilibrium Crystal Particle Fabrication by Submicron Molten Droplet Quenching

研究代表者 Research leader: 石川 善恵

善恵 Yoshie ISHIKAWA

国立研究開発法人産業技術総合研究所 電子光基礎技術研究部門 主任研究員 Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Senior Researcher E-mail: ishikawa.yoshie@aist.go.jp

抄 録

我々が開発してきた粒子合成法である液中レーザー溶融法を用い,ZnOと MgO または Mg(OH)₂の 混合粒子から Zn_{1-x}Mg_xO 粒子の合成を試みたところ,合金化反応が起こることが明らかとなった. ZnO 中への Mg の固溶量 x は ZnO 粒子と MgO または Mg(OH)₂ の混合方法に依存し,機械攪拌法 では x = 0.09, 共沈法では x = 0.20 の Zn_{1-x}Mg_xO 球状粒子が得られた. 共沈法では生成する Mg(OH)₂ 粒子が小さく,さらに機械攪拌法と比べて ZnO と Mg(OH)₂ が高い頻度で接触した状態の 混合粒子が得られるためと考えられる. 様々な比率の ZnO と MgO または Mg(OH)₂ の混合原料粒 子に対する照射試験を実施ししたところ,本手法におけるウルツ鉱型 ZnO への Mg の固溶限界は 0.20 と 0.24 の間にあることが明らかとなり,従来の一般的なセラミックスの固相反応で報告され ている Mg 固溶限界量である x = 0.2 と同程度の結果が得られた.

ABSTRACT

We attempted to synthesize $Zn_{1-x}Mg_xO$ particles from a mixture of ZnO and MgO or Mg(OH)₂ particles using our original particle synthesis method, pulsed laser melting in liquid (PLML), and confirmed that an alloying reaction occurred. The solid solubility *x* of Mg in ZnO depends on the mixing method of ZnO and MgO or Mg(OH)₂ particles. The $Zn_{1-x}Mg_xO$ particles with solid solubility *x* = 0.09 and 0.20 were obtained from mixture particles prepared using mechanical mixing and coprecipitation methods. This is due to the smaller Mg(OH)₂ particles produced by the coprecipitation method and the higher frequency of contact between ZnO and Mg(OH)₂ compared to the mechanical mixing method. The solid solution limit of Mg to Wurtzite-type ZnO in this study was found to be between 0.20 and 0.24, which is comparable to the Mg solid solution limit of *x* = 0.2 reported for the conventional solid phase reaction of common ceramics.

研究背景と目的

我々はパルスレーザーを用いた液中での微粒 子合成プロセスである「液中レーザー溶融法」 (pulsed laser melting in liquid; PLML 法) を独 自に開発し、そのメカニズム解明や適用材料の 拡張、生成粒子の応用について研究を行ってき た (Ishikawa et al., 2007). この方法では, 原料 である形状が不揃いなナノ粒子を水やエタノー ルなどの汎用的な透明液体に分散させ、そこに ナノ粒子が光学吸収を有する波長で適切なエネ ルギー密度のパルスレーザー光 (パルス幅: ~数ns)を照射する.パルスレーザー光を吸 収したナノ粒子は速やかに温度上昇し、融点以 上に到達すると溶融液滴となる.一方、媒体で ある周囲の液体は透明であるためパルスレー ザー光による直接的な温度上昇は起こらないこ とから、生成した溶融液滴は急速に冷却(10⁹⁻¹⁰Ks⁻¹) され (Ishikawa et al., 2023), 主にサブミクロン サイズの球状粒子が得られる(図1).このと きの冷却速度は従来知られているアモルファス 合金の冷却速度(10³K s⁻¹)と比較しても大幅 に高速であり、この手法によって得られる合金

Laser pulse

Fig. 1 Schematic diagram of pulsed laser melting in liquid (PLML) and comparison of particle shape before and after laser irradiation.

や複合化合物の組成は興味深い.

本研究ではウルツ鉱型 ZnO と岩塩型 MgO の 半導体合金である Zn_{1-x}Mg_xO に着目した. ZnO のバンドギャップは 3.37 eV であるが、Mg 溶 解量の増加に従いバンドギャップが増大し, ソーラーブラインドセンサーなどへの応用可能 な有用な材料となり得る. ZnO への Mg の熱力 学的な固溶限界はx = 4 (mol%) とされており, 高濃度の Mg の溶解によって容易に岩塩型の相 分離が起こる. これに対し, Ohtomo らによる 格子不整合を緩和するバッファ層を用いた PLD 法 (Ohtomo et al., 1998) をはじめとし, MBE 法などの原子を高度に制御しながら積層 する薄膜製造手法によって x = 40 付近にもかか わらずウルツ鉱型単相 Zn1-xMgxOの達成が報告 されているが、一般的な固相セラミックス反応 をベースとした粉体製造法では、x = 20 程度に 留まっている (Li et al., 2015; Singh et al., 2015). そこで本研究では PLML 法を用いた Zn1-rMgrO 粒子の合成を試み, PLML 法の条件が Mg 固溶 量xに及ぼす影響を検証した.

研究方法

1. 原料混合粒子の調製

本研究では一般的なセラミックス固相合成を 模した ZnO と MgO または Mg(OH)₂ の混合粒 子を原料とし、その分散液にパルスレーザー光 を照射することによる Zn_{1-x}Mg_xO 粒子の合成を 試みた. ZnO と MgO または Mg(OH)₂ の合金化 が起こるためにはこれらの粒子が密接に接触し ている必要がある。そこで本研究では機械攪拌 法と共沈法の 2 つのアプローチによる原料混合 粒子の調製を試みた。

1.1 機械攪拌法

ZnO(Aldrich, 544906)と MgO(富士フイル ム和光純薬, 133-00281)の所定のモル比で混 合した粒子を遊星ボールミル(Verder Scientific Co., Ltd., Retsch PM100)を用い, エタノールを 媒体として 300 rpm で 3 時間機械攪拌した. 研

500 nm

1.2 共沈法

Zn(NO₃)₂(富士フイルム和光純薬, 263-00335)の1M水溶液とMg(NO₃)₂(富士フイ ルム和光純薬, 134-00255)の1M水溶液を所 定のモル比となるように混合した水溶液に, NaOH(富士フイルム和光純薬, 197-14891)の 2M水溶液をpHが12となるまで添加した. 得られた白色沈殿をブフナー漏斗を用いて回収 し,大気雰囲気 250°Cで10時間加熱処理を行っ て ZnO と Mg(OH)₂の混合原料粒子を得た.

2. レーザー照射実験

ZnOと MgO または Mg(OH)₂ が所定の比率で 混合した粒子は, ZnO の濃度が 1 × 10⁻⁴ g mL⁻¹ となるように水中に分散させた. この混合分散 液 5 mL に 照 射 用 容 器 中 で 攪 拌 し な が ら Nd:YAG レ ー ザ ー (Quanta-Ray, Lab-150-10, パルス幅 5 ns, パルス周波数 10 Hz, ビーム直 径 8 mm, 波長 266 nm)を照射した.

3. 生成粒子の分析と特性評価

得られた粒子の形状は走査型電子顕微鏡 (SEM)(Hitachi, S-4800)を用いて観察し,結 晶構造をX線回折(XRD)(Rigaku, Ultima-IV) を用いて明らかにした.ウルツ鉱型 $Zn_{1-x}Mg_xO$ 中のMg 固溶量 x は, ZnOの(002)のピーク 位置のシフト量から見積もった.得られた粒子 の光学吸収特性は拡散反射スペクトル (Shimadzu, SolidSpec-3700)を用いて評価した.

研究成果

機械攪拌法で使用した ZnO 粒子と MgO 粒子 の SEM 写真を図 2(a)(b) に示す. ZnO 粒子は約 50–100 nm, MgO 粒子は 200–500 nm の形状が 不揃いな多角形粒子である.図2(c) は ZnO と MgO を 1:1 の混合モル比で機械攪拌後に 100 mJ cm⁻² pulse⁻¹ で 45 min 照射した粒子を示 す.300 nm の球状粒子が得られた.

照射後の粒子の XRD 測定結果を図3 に示す. ウルツ鉱型 ZnO のピークが確認され, MgO の

Fig. 2 SEM images of (a) raw ZnO (Ishikawa et al., 2013), (b) raw MgO, and (c) after laser irradiation of mixture particles prepared with mechanical mixing.

Fig. 3 XRD patterns of the particles after laser irradiation of mixture obtained with mechanical mixing. (ZnO : MgO = 1 : 1)

ピークは確認されなかった.34.5°付近の ZnO の(002) ピークを詳細に解析したところ,試 薬である ZnO と比較して 0.07°高角度側にシフ トしていた.これまでの Zn_{1-x}Mg_xO の研究によ り、ウルツ鉱型 ZnO は Mg 固溶量の増大に従い c 軸長が短くなることが報告されており、
(002) ピーク位置のシフト量から Mg の固溶量を見積もることができる(Ohtomo et al., 1998).
同様にして Mg 固溶量 x を評価したところ、x
= 0.09 と見積もられた. ZnO と MgO の混合モル比を 1:2 でも試みたところ、固溶量 x に大きな変化は確認できなかった.

共沈法により ZnO: Mg(OH)₂ を 1:1 のモル 比率で得た混合粒子の照射前後の SEM 写真を 図 4 に示す. 照射前は 200 nm ほどの長さで様々 な 径 の 六 角 柱 状 の ZnO と 10 nm 程 度 の Mg(OH)₂ 粒子の混合物であった. この混合粒 子の分散液を 100 mJ cm⁻² pulse⁻¹ で 45 min 照射 したところ, 主に 200–300 nm の球状粒子が得 られた. 共沈法で得られた混合粒子の XRD 測定結果 を図5に示す.34.5°付近のZnOの(002)ピー クを詳細に解析したところ,試薬であるZnO と比較して照射後は0.17°高角度側にシフトし ており,Mg 固溶量はx = 0.20と見積もられた. 共沈法におい混合モル比を1:2で得られた混 合粒子を照射したところ,固溶量x = 0.24とわ ずかな増加が見られたが,MgOのピークがわ ずかに確認されたことから,ウルツ鉱型ZnO へのMgの固溶限界は0.20と0.24の間にある と考えられた.

機械攪拌法(ZnO:MgO=1:1)と共沈法 (ZnO:Mg(OH)₂=1:1)で作製した混合粒子を 照射して得られた粒子の拡散反射スペクトルを

Fig. 4 SEM images of (a) before laser irradiation of ZnO and $Mg(OH)_2$ mixture obtained with coprecipitation and (b) after laser irradiation. (ZnO : $Mg(OH)_2 = 1:1$)

Fig. 5 XRD patterns of reagent ZnO and the particle mixture obtained with coprecipitation. (ZnO: Mg(OH)₂ = 1 : 1)

Fig. 6 UV-Vis diffuse reflectance spectra of reagent ZnO and the irradiated mixture particles obtained by the mechanical milling process and coprecipitation process.

図6に示す. 試薬のZnOの吸収端が385 nm で あるのに対し, 機械攪拌法, 共沈法のいずれの 混合方法においても照射後の粒子の吸収端は短 波長側にシフトした. これらのシフトの程度は XRD の結果から求められたそれぞれの固溶量 x (機械攪拌法 x = 0.09, 共沈法 x = 0.20) に対 応するものであった.

本研究では液中レーザー溶融法による特殊な 加熱プロセスを用いた $Zn_{1-x}Mg_xO$ 合金化反応の 可能性を調べたところ, 合金化反応が起こるこ とが明らかとなった. ZnO 中への Mg の固溶量 は ZnO 粒子と MgO または $Mg(OH)_2$ の混合方 法に依存し, 機械攪拌法では x = 0.09, 共沈法 では x = 0.20 の $Zn_{1-x}Mg_xO$ 球状粒子が得られた. 共沈法では生成する $Mg(OH)_2$ 粒子が小さく, さらに機械攪拌法と比べて ZnO と $Mg(OH)_2$ が 高い頻度で接触した状態の混合粒子が得られる ためと考えられる. また様々な比率での ZnO と MgO または Mg(OH)₂ の混合原料粒子に対し て照射試験を実施したところ,本手法における ウルツ鉱型 ZnO への Mg の固溶限界は 0.20 と 0.24 の間にあることが明らかとなり,従来の一 般的なセラミックスの固相反応で報告されてい る Mg 固溶限界量である *x* = 0.2 と同程度の結 果が得られた.

参考文献

- Ishikawa Y., Shimizu Y., Sasaki T., Koshizaki N., Boron carbide spherical particles encapsulated in graphite prepared by pulsed laser irradiation of boron in liquid medium, Applied Physics Letters, 91 (2007) 161110. https://doi.org/10.1063/1.2799786
- Ishikawa Y., Katou Y., Koshizaki N., Feng Q., Raw particle aggregation control for fabricating submicrometer-sized spherical particles by pulsed-laser melting in liquid, Chemistry Letters, 42 (2013) 530–531. https://doi.org/10.1246/cl.130044
- Ishikawa Y., Tsuji T., Sakaki S., Koshizaki N., Pulsed laser melting in liquid for crystalline spherical submicrometer particle fabrication– Mechanism, process control, and applications, Progress in Materials Science, 131 (2023) 101004. https://doi.org/10.1016/j.pmatsci.2022.101004
- Li X., Liu Y., Song J., Xu J., Zeng H., MgZnO nanocrystals: mechanism for dopant-stimulated self-assembly, Small, 11 (2015) 5097–5104.

https://doi.org/10.1002/smll.201501550

- Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y., Yoshida Y., Yasuda T., Segawa Y., Mg_xZn_{1-x}O as a II–VI widegap semiconductor alloy, Applied Physics Letters, 72 (1998) 2466–2468. https://doi.org/10.1063/1.121384
- Singh V. P., Rath C., Passivation of native defects of ZnO by doping Mg detected through various spectroscopic techniques, RSC Advances, 5 (2015) 44390–44397. https://doi.org/10.1039/C5RA04767F

外部発表成果

口頭・ポスター発表

1. 石川 善恵, 齋藤 滉一郎, 越崎 直人, "液中

レーザー溶融法による Zn_{1-x}Mg_xO 粒子の合成", 公益社団法人日本セラミックス協会第 35 回秋季シンポジウム (Tokushima, Sept. 14-16, 2022) 2M26.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 39-45 /https://doi.org/10.14356/hptf.21103

HPTF21103

電界紡糸マットを用いた中空多孔吸入粉末剤の調製

Development of Porous Inhalation Powder Using Electrospun Nanofiber Mats

研究代表者 Research leader: 伊藤 貴章 Takaaki ITO 岐阜薬科大学薬物送達学大講座 助教 Drug Delivery Technology and Science Laboratory, Gifu Pharmaceutical University, Assistant Professor E-mail: ito-ta@gifu-pu.ac.jp

抄 録

吸入剤のうち吸入粉末剤(DPI)は、粉末粒子を肺深部に到達するために、空気力学的粒子径を1 ~6μmに制御する必要がある.しかし、シングル・ミクロンの粒子は付着凝集性が高いため、吸 入デバイスからの放出が難しい.加えて、既存のDPI 調製法は、通常、高温処理が必要で、熱に 弱い薬剤に適用することができない.本研究では、溶液を室温でナノファイバーとして粉末固化で きる電界紡糸法に着目した.ナノファイバー・マットの繊維構造を維持しつつ粉砕微粒子化するこ とで、DPI に最適な中空多孔粒子を調製した.繊維マットを凍結粉砕することで幾何学的粒子径 10~35μmの微粒子を調製することに成功した.カスケード・インパクターを用いた in vitro 肺送 達性試験の結果、空気力学的粒子径は幾何学的粒子径よりも小さく(5.9μm),DPI に適した空気 力学的粒子径を有していた.粉砕による一部失活は認められたものの、タンパク質の活性を維持し つつ DPI 製剤化に成功した.

ABSTRACT

Dry powder inhalers (DPIs) require controlled aerodynamic diameters of 1 to 6 μ m in order for the powder particles to deliver to the deep lungs. However, single-micron particles are difficult to release from inhalers due to their high degree of adhesion and aggregation. In addition, conventional DPI preparation methods cannot be applied to heat-sensitive drugs because they require processing at high temperatures. In this study, we focused on the electrospun technique. The applicant showed that cryo-milled polyvinyl alcohol nanofiber mats loaded with α -chymotrypsin (α -Chy) by electrospinning exhibited suitable inhalation properties for use in DPIs, while maintaining enzymatic activity. Porous particles with geometric diameters ranging from 10 to 35 μ m were prepared to reduce adhesion. The in vitro aerosol performance of the milled nanofiber mats using a cascade impactor showed that the aerodynamic particle size was smaller (5.9 μ m) than the geometric diameter, making the aerodynamic diameter suitable for DPI. The milled nanofiber mats maintained the enzymatic activity of α -Chy. Furthermore, the activity of milled fiber mats that had been stored for 6 months was comparable to the activity of those that were freshly prepared.

研究背景と目的

抗体医薬を含むバイオ医薬品の世界的な売上 は急成長しており,2022年に販売された医薬 品の上位100品目のうち55品目を,バイオ医 薬品が占めている(McGrath et al., 2010).標的 特異的作用と柔軟な薬理学的設計を持つバイオ 医薬品は,その市場シェアを今後さらに拡大す る可能性が高い.一方で,バイオ医薬品には製 剤学的観点から改善の余地が残る.例えば,バ イオ医薬品は一般的に注射によって投与される ため,侵襲性の懸念があるほか,溶液中での保 存安定性が低いという欠点がある(Ferrati et al., 2018).このような問題を踏まえ,新規投与 経路の確立と保存安定性の向上を目的とした製 剤技術開発が近年進んでいる.

呼吸器上皮疾患の場合,吸入剤としてのバイ オ医薬品開発は,薬物送達のための合理的な手 段である(Tahara et al., 2016).吸入剤は注射よ りも侵襲性が低く,全身的な副作用を軽減でき る.さらに,吸入剤は患者による自己投与が可 能であり,患者のコンプライアンスを高める可 能性がある.その一方で,ほとんどの吸入剤は, 製造から投与に至る過程のどこかで,加水分解, 超音波,せん断力,加熱などの物理化学的スト レスを受ける.これらのストレスはペプチドや タンパク質の分解や変性の原因となり,吸入バ イオ医薬品の臨床応用を妨げている.

これらの問題を解決するために、申請者は電 界紡糸(ES)法を用いたバイオ医薬品の吸入 粉末製剤(DPI)化に着目した.ES法はエレク トロスプレー・イオン化(ESI)技術である. 高分子ポリマーを含む試料溶液に電圧を加える ことで溶液の表面張力に打ち勝ったポリマー溶 液が放出され、ナノファイバーを形成する (Shibata et al., 2022).試料溶液の溶媒は、せん 断力や加熱を使用することなく、コレクターに 向かって移動する際に蒸発する.DPIは、溶液 中で加水分解を受けるバイオ医薬品の保存安定 性を向上させることができる.

DPI を調製するためには、幾何学的粒子径と

密度から計算される空気力学的粒子径を1~ 6 μm の範囲にする必要がある (Dolovich and Dhand, 2011). 一般に, DPI において薬物は ジェットミルまたは噴霧乾燥によってシングル・ ミクロンサイズまで微細化される(Chaurasiya and Zhao, 2021). 一方で、単純な微細化は粒子 径に反比例して付着凝集性を増大させるため, 微細化同士の凝集や吸入デバイスからの放出を 妨げることになる(Le et al., 2012). 凝集を防 ぐには、粒子を乳糖のような大きなキャリア(50 ~ 100 µm) と混合する必要がある (Guenette et al., 2009). 一方, これらの混合物は, 薬剤をキャ リアから分離するために強く吸う必要があるた め、患者の吸入技術によっては、これらのキャ リアが吸入特性に及ぼす影響が懸念される. さ らに、ジェットミルや噴霧乾燥によって発生す るせん断力や加熱などのストレスは、バイオ医 薬品の分解や変性を引き起こす可能性がある. ES 法 DPI は、大きな比表面積と高い空隙率を 有する高分子ナノファイバー・マットを適切に 微粒子化することで,優れた吸入特性を有する 低密度粒子を調製できる可能性がある.

そこで本研究では、バイオ医薬の DPI 製剤 化を実現するために、ES 法を用いた DPI 製剤 化技術の確立を目指した.タンパク質の α-キ モトリプシン (α-Chy) と高分子ポリマーのポ リビニルアルコール (PVA) からなるナノファ イバー・マットをそれぞれ実験薬物と賦形剤と して調製した.α-Chy は加熱または溶液中で不 活性化され、長期保存のためには凍結保存が必 要であるため本研究のモデル薬物に採用した (Lozano et al., 1997). PVA は生分解性合成高分 子であり、日本の医薬品賦形剤として認可され ている.本研究ではナノファイバー・マットを 粉砕微粒子化し、in vitro 肺送達性とα-Chy 酵 素活性の観点から評価した.

研究方法

1. 試料

PVA (ゴーセノール EG-40P, 重合度 2400,

研

加水分解度 88 mol%) は三菱ケミカル株式会社 より入手し,ファイバー賦形剤として使用した. α-Chy は Sigma-Aldrich から購入し,モデル薬 物として使用した.ウラニンは東京化成工業株 式会社から購入し, in vitro 肺送達性試験のた めの蛍光標識として使用した.

2. ES 法ナノファイバー・マットの調製

PVA 水溶液に薬物 (α -Chy またはウラニン) を添加して試料溶液を調製した.溶質濃度は 320.0 mg/4.0 mL に調整した.薬物の組成比は, ES 法ナノファイバー・マットの物理化学的特 性への影響を最小限に抑えるため、1% (3.2 mg) とした.ナノファイバー・マットの調製は、サ ンプル溶液を 5 mL のシリンジに充填し、シリ ンジポンプ (ユタカ電子)を用いて 22 G の針 に 0.5 mL/h で供給した.高電圧電源 (MECC 株式会社)の電極を針に接続し、アルミニウム で覆われたコレクターをカソードとして接地し た.針とコレクター間の距離は 10 cm、印加電 圧は 10 kV、実験は室温 ($20 \sim 25^{\circ}$ C)、相対湿 度 50% 以下で行った.

3. ES 法ナノファイバー・マットの微粒子化

DPI は, ES 法ナノファイバー・マットを凍 結粉砕(JFC-300, 日本分析工業株式会社) す ることで調製した. ナノファイバー・マット約 50 mg を充填したサンプルセルを液体窒素に異 なる時間(5,30 min)浸漬し,異なる時間(1,3, 5 min)粉砕した.

4. ES 法ナノファイバー・マットと粉砕微粒 子の形態観察

走査型電子顕微鏡(JSM-6510LV,日本電子 株式会社)を用いて、ナノファイバー・マット と凍結粉砕した微粒子の形態を観察した。

5. 粉砕したナノファイバー・マットの粒子 径測定および in vitro 肺送達性評価

乾式レーザー回折式粒度分布測定装置 (LDSA-SPR 3500A, MicrotracBEL Corp.)を用い て幾何学的直径(**D**₅₀(メジアン径))を決定した.

ウラニンを含む粉砕ナノファイバー・マット の肺送達性を、アンダーセン・カスケード・イ ンパクター (ACI; AN-200, 東京ダイレック株 式会社)を用いて評価した. 粉砕した各ナノファ イバー・マット3mgを2号ヒドロキシプロピ ル・メチルセルロース・カプセル (HPMC Capsule) に充填し, 吸入デバイス (Jethaler[®] Reverse, トキコシステムソリューションズ株 式会社) にセットした. 流量を 28.3 L/min, 吸 入時間を5sに設定した.吸入後,各ステージ に付着した粉末を回収した. 堆積した粉末の量 を, ウラニンの蛍光強度から推定した. 肺送達 性は、吸入器とカプセルからの放出性の指標で ある delivered dose (DD), 肺への粉末の到達性 (空気力学的直径 < 4.7 µm) を推定する fine particle fraction (FPF), 各ステージでの粉末沈 着の割合から計算される空気力学質量中央径 (MMAD) から評価した (Ito et al., 2019).

6. α-Chy 酵素活性評価

α-Chy 酵素活性は、*p*-ニトロフェニル酢酸の *p*-ニトロフェノールへの脱エステル化量に基づいて測定した.粉砕したナノファイバー・マット 22.5 mg を PBS 1.5 mL にα-Chy 濃度が150 µg/mL となるよう溶解した後、ジメチルスルホキシドに溶解した 60 mM *p*-ニトロフェニル酢酸 20 µL を溶解液に加え、30 min 反応させた.紫外可視分光光度計(UV-1800,株式会社 島津製作所)を用いて 404 nm の吸光度を測定し、*p*-ニトロフェノールを定量し、酵素活性を数値化した.

長期安定性を確認するため, α-Chy を含む粉 砕ナノファイバー・マットを6カ月間保存した. 粉砕したナノファイバー・マット約25 mg をシ リカゲルが入った密閉容器に入れ, 20~25°C で保存した.また対照群として,粉砕ナノファ イバー・マットと同じ組成のα-Chy を含む溶液 も保存した.

研究成果

1. ES 法ナノファイバー・マットと粉砕微粒 子の形態観察

走査型電子顕微鏡で観察された ES 法ナノ ファイバー・マットの繊維径は 300 ~ 600 nm であった.一方,粉砕したナノファイバー・マッ トは,粉砕前の繊維径を維持しつつ,不規則か つ低密度の多孔質形状を有している微粒子とし て観察された(図1).微粒子の幾何学的粒子 径は 10 ~ 35 µm であることから,付着性が低 く,分散が容易であると予想される(Otake et al., 2016).また,空気力学的粒子径は密度の平 方根に比例するため,多孔質構造は見かけの粒 子径よりも優れた肺送達性が期待できる. 30 min 凍結し,1 min および 3 min 粉砕したナ ノファイバー・マットは,繊維構造を維持した まま,多孔質粒子で粉末化されていた.一方, 5 min 粉砕したナノファイバー・マットは,繊

Fig. 1 Scanning electron micrographs of the electrospun nanofiber mats and milled nanofiber mats.

(a) A polyvinyl alcohol (PVA) nanofiber mat prepared using the electrospinning technique. (b) A PVA nanofiber mat milled by cryo-milling (freezing: 30 min, milling: 3 min).

 Table 2
 Aerosol performance of the milled nanofiber mats.

維構造が破壊された.また,短い凍結時間 (5 min)も粒子形状に影響を与え,繊維構造が 破壊された.Fourierの法則とNewtonの冷却則 によれば,繊維構造は,凍結粉砕機のセル内の 低い熱対流と,繊維の小さな断面積に起因する 熱伝導の低さにより,凍結に十分な時間が必要 であった可能性がある(Lienhard J.H. IV and Lienhard J.H. V., 2020).

粉砕ナノファイバー・マットの粒子径測 定および in vitro 肺送達性評価

乾式レーザー回折式粒度分布測定装置を用い て,粉砕ナノファイバー・マットの幾何学的直 径を算出した(**表**1).凍結時間(5,30 min)は 幾何学的粒子径に影響を与えなかった.一方, 幾何学的粒子径は粉砕時間に反比例して減少 し,5 min 粉砕した微粒子が最も小さく,7.36 μm であった.

粉砕ナノファイバー・マットのデバイスから の放出性に対応する DD 値は 75% 以上であり, 同じ凍結時間でも粉砕時間が長くなるにつれて

 Table 1 Operating conditions of freeze milling and particle size of the milled nanofiber mats.

Formulation	D ₅₀ (μm)
Freezing: 30 min, milling: 1 min	34.39 ± 1.22
Freezing: 30 min, milling: 3 min	12.60 ± 0.67
Freezing: 30 min, milling: 5 min	7.36 ± 0.80
Freezing: 5 min, milling: 3 min	14.37 ± 1.71

A dry laser diffraction particle size analyzer determined the geometric diameter of the milled nanofiber mats (mean \pm standard deviation [SD], n = 3)

Formulation	DD (%)	FPF (%)	MMAD (µm)
Freezing: 30 min, milling: 1 min	78.4 ± 3.6	16.3 ± 1.3	9.7 ± 1.0
Freezing: 30 min, milling: 3 min	81.8 ± 0.4	26.5 ± 0.8	5.9 ± 3.4
Freezing: 30 min, milling: 5 min	83.8 ± 2.8	10.7 ± 1.2	11.0 <
Freezing: 5 min milling: 3 min	889 ± 39	0.9 ± 0.3	11.0 <

DD, delivered dose; FPF, fine particle fraction; MMAD, mass median aerodynamic diameter (mean \pm standard deviation [SD], n = 3).

研

増加した(表2).一方,肺送達性の指標であ る FPF および MMAD は、凍結および粉砕条件 によって有意に変化し, 30 min 凍結し3 min 粉 砕したナノファイバー・マットが最も高いエア ロゾル性能を示した.この粉砕ナノファイバー・ マットは、26.5%の最大 FPF を示し、これは 5 min 凍結 3 min 粉砕したナノファイバー・マッ トの20倍以上であった。形態観察において、 5 min 凍結した粉砕ナノファイバー・マットの 繊維構造は破壊されていた.同じ粉砕時間で同 等の幾何学的粒子径でも、低密度の多孔質形状 を維持することで優れた肺送達性を達成したと 考えらえる.一方,同じ凍結時間では、3分間 粉砕されたナノファイバー・マットが最も高い 肺送達性を示した.これらの結果は、非常に短 い粉砕時間では微粒子を製造するには不十分 で、反対に、過度の粉砕時間は繊維構造を破壊 し、粉砕されたナノファイバー・マットの粒子 密度が増加することで肺送達性が低下すること を示唆している.

3. α-Chy 酵素活性評価

α-Chyを含む粉砕ナノファイバー・マットの 酵素活性を測定し,粉砕後のタンパク質の完全 性を推定した.その結果,粉砕時間によって部 分的に破壊されるものの,ナノファイバー・マッ ト中の酵素活性を保持した(表3).30 min 凍 結した全ての粉砕ナノファイバー・マットの酵 素活性は80%以上であり,粉砕時間に応じて 減少した.逆に,5 min 凍結し3 min 粉砕した ナノファイバー・マットの酵素活性は,30 min 凍結したマットの酵素活性(68.6%)よりも低かった.上述した通り,5min凍結は凍結に不十分であったことが原因と考えられる.

α-Chyの長期安定性を確認するため,30 min 凍結3 min 粉砕した粉砕ナノファイバー・マッ トと、同組成のα-Chy溶液を6カ月間保存した (表4). その結果、6ヵ月間保存した粉砕ナノ ファイバー・マットの活性は、調製したてのナ ノファイバー・マットの活性と同程度(96.4%) であった.一方、対照群として保存したα-Chy 溶液は、6カ月保存後に36.0%まで酵素活性が 低下した. ES法 DPI は薬物の加水分解などを 回避できることから、液剤よりも室温下で優れ た保存安定性を発揮すると考えられる.

4. まとめ

ES 法は,熱を必要としないため,熱に弱い 薬物の DPI 調製に有用であると考えられる.

Table 3	Assessment	of	the	enzymatic	activity	of
α-	chymotrypsin	(α-C	Chy).			

Formulation	Enzymatic activity
Electrospun nanofiber mat	100%
Freezing: 30 min, milling: 1 min	90.4%
Freezing: 30 min, milling: 3 min	89.9%
Freezing: 30 min, milling: 5 min	81.7%
Freezing: 5 min, milling: 3 min	68.6%

Enzymatic activity of α -Chy-loaded polyvinyl alcohol (PVA) nanofiber mats milled by cryo-milling (n = 1). The enzymatic activity indicates the activity of the α -Chy-loaded PVA nanofiber mat.

Table 4 Long-term stability of α -chymotrypsin (α -Chy).

Formulation		Enzymatic activity
Solution	Freshly prepared	100%
	Stored 6 months	36.0%
Milled nanofiber mat (Freezing: 30 min, milling: 3 min)	Freshly prepared	100%
	Stored 6 months	96.4%

The milled nanofiber mats that were frozen for 30 min and milled for 3 min and solutions containing α -Chy of the same composition were stored for 6 months and compared with freshly prepared ones regarding enzymatic activity (n = 3, mean \pm standard deviation [SD]).

さらに, ES 法 DPI は, 溶液中で不安定で保存 中に加水分解を受ける薬物を,室温で簡便かつ 経済的に保存することが可能であり,コールド・ チェーンに縛られてきた医薬品の流通を促進で きる. 急速に拡大するバイオ医薬品市場におい て, 非侵襲的な投与を実現する吸入療法は有用 な投与経路と考えられる. 本研究技術の確立に より, バイオ医薬品および吸入剤の開発に柔軟 性をもたらすことを目標に今後も検討を続け る.

本研究では、DPIを調製するための代替方法 として ES 法による DPI 調製を提案した. ES 法プロセスは製剤組成, 調製条件, 粉砕条件な ど様々な要因によって影響を受けるため, 今後 DPI の肺送達性, 薬物安定性を改善させる必要 がある.

謝辞

本研究に際しご支援いただきましたホソカワ 粉体工学振興財団に心より感謝申し上げます.

参考文献

- Chaurasiya B., Zhao Y.Y., Dry powder for pulmonary delivery: a comprehensive review, Pharmaceutics, 13 (2021) 31. https://doi.org/10.3390/pharmaceutics13010031
- Dolovich M.B., Dhand R., Aerosol drug delivery: developments in device design and clinical use, Lancet, 377 (2011) 1032–1045.

https://doi.org/10.1016/S0140-6736(10)60926-9

- Ferrati S., Wu T., Kanapuram S.R., Smyth H.D.C., Dosing considerations for inhaled biologics, International Journal of Pharmaceutics, 549 (2018) 58–66. https://doi.org/10.1016/j.ijpharm.2018.07.054
- Guenette E., Barrett A., Kraus D., Brody R., Harding L., Magee G., Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design, International Journal of Pharmaceutics,

380 (2009) 80-88.

https://doi.org/10.1016/j.ijpharm.2009.07.002

Ito T., Okuda T., Takashima Y., Okamoto H., Naked pDNA inhalation powder composed of hyaluronic acid exhibits high gene expression in the lungs, Molecular Pharmaceutics, 16 (2019) 489–497.

https://doi.org/10.1021/acs.molpharmaceut.8b00502

- Le V.N.P., Robins E., Flament M.P., Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations, European Journal of Pharmaceutics and Biopharmaceutics, 80 (2012) 596–603. https://doi.org/10.1016/j.ejpb.2011.12.004
- Lienhard J.H. IV, Lienhard J.H. V., A Heat Transfer Textbook, 5th ed., Dover publications, New York, NY, USA, 2020; ISBN 978-0486837352.
- Lozano P., Diego T.D., Iborra J.L., Dynamic structure/function relationships in the α-chymotrypsin deactivation process by heat and pH, European Journal of Biochemistry, 248 (1997) 80–85.

https://doi.org/10.1111/j.1432-1033.1997.00080.x

- McGrath N.A., Brichacek M., Njardarson J.T., Graphical journey of innovative organic architectures that have improved our lives, Journal of Chemical Education, 87 (2010) 1348–1349. https://doi.org/10.1021/ed1003806
- Otake H., Okuda T., Hira D., Kojima H., Shimada Y., Okamoto H., Inhalable spray-freezedried powder with L-leucine that delivers particles independent of inspiratory flow pattern and inhalation device, Pharmaceutical Research, 33 (2016) 922–931.

https://doi.org/10.1007/s11095-015-1838-4

Shibata T., Yoshimura N., Kobayashi A., Ito T., Hara K., Tahara K., Emulsion-electrospun polyvinyl alcohol nanofibers as a solid dispersion system to improve solubility and control the release of probucol, a poorly water-soluble drug, Journal of Drug Delivery Science and Technology, 67 (2022) 102953.

https://doi.org/10.1016/j.jddst.2021.102953

Tahara K., Hashimoto W., Takeuchi H., Inhalation properties and stability of nebulized naked siRNA solution for pulmonary therapy, Chemical and Pharmaceutical Bulletin, 64 (2016) 63–67.

https://doi.org/10.1248/cpb.c15-00615

外部発表成果

論文発表

 Ito T., Yamazoe E., Tahara K., Dry powder inhalers for proteins using cryo-milled electrospun polyvinyl alcohol nanofiber mats, Molecules, 27 (2022) 518. https://doi.org/10.3390/molecules27165158

口頭・ポスター発表

1. 奥田 寛生, 伊藤 貴章, 山添 絵理子, 田原

耕平, "吸入粉末剤調製を志向した電界紡糸 ナノファイバーマットの粉砕条件の検討", 日本薬剤学会 第37年会 (Kyoto, May. 26– 28, 2022) 2D-20.

- 伊藤 貴章,奥田 寛生,山添 絵理子,田原 耕平,"エレクトロスピニング技術を用いた バイオ医薬用吸入粉末剤の製剤設計",省エ ネルギーに貢献する粒子設計・粉体プロセ スの薬工連携研究会 2022 年度若手研究者討 論会(Aichi, Sept. 27, 2022).
- 伊藤 貴章, "電界紡糸技術を用いた低安定 性薬物の吸入粉末製剤化", 国際粉体工業展 東京 2022 (Tokyo, Dec. 7–9, 2022).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 46-51 /https://doi.org/10.14356/hptf.21104

HPTF21104

超音波ビーズミルによる量子ドットの合成

Preparation of Quantum Dots by Ultrasound-assisted Beads Milling Method

研究代表者 Research leader: 梅本 和輝 Kazuki UMEMOTO 山形大学大学院理工学研究科 研究支援者 Graduate School of Science and Engineering, Yamagata University, Research Assistant E-mail: umemoto@yz.yamagata-u.ac.jp

抄 録

ペロブスカイト量子ドットは、優れた発光特性を有し広色域ディスプレイの発光体として期待され ているが、工業的実用性のある合成法の開発には課題を残している、微粒子の合成法として、実績 のある粉砕法が有望であるが、粉砕経過に伴う粒子の凝集と融着による量子ドットのサイズ単分散 化が困難であった、本研究では、申請者等が独自に考案した「超音波」と「ビーズ粉砕」を組み合 わせた「超音波ビーズミル法」を適用する、超音波照射により、粒子の凝集と融着を抑制すること で、粒子の分散状態を維持したまま粉砕できる、これにより、サイズ単分散量子ドットの合成を達 成し、さらに発光デバイスに展開できる.本研究では、粉砕条件の検討による発光特性の向上と、 シミュレーションによる粉砕メカニズムの解明.発光デバイスの作製・評価を一貫して実施するこ とで,超音波ビーズミル法の高い優位性を明らかにした.

ABSTRACT

Perovskite quantum dots have excellent luminescence properties and are expected to be used as phosphors for wide color gamut displays. However, the development of an industrially practical synthesis method for quantum dots remains challenges. Although a proven pulverization method is promising for the synthesis of fine particles, it is difficult to achieve monodispersion of quantum dots due to aggregation and fusion of particles during the pulverization process. In this study, we apply the "ultrasound bead milling method," which is a combination of "ultrasound" and "bead milling" originally devised by the authors. Ultrasound irradiation suppresses aggregation and fusion of the particles, allowing the particles to be milled while maintaining their dispersed state. This enables the synthesis of size monodisperse perovskite quantum dots, which can be further developed into light-emitting devices. In this study, the high superiority of the ultrasound bead milling was clarified by improving optical properties by evaluating the milling conditions, clarifying the milling mechanism through simulation, and fabricating and evaluating luminescent devices in a consistent manner.

研究背景と目的

ペロブスカイト量子ドット (PeQDs) は, 優 れた光学特性を有する発光材料である.非常に 高い発光量子収率 (PLQY, ~ 100%), 狭い発 光スペクトルの半値幅 (FWHM, 20~40 nm), 可視光全域に渡る発光波長制御(400~ 700 nm) といった光学特性を有し (Protesescu et al., 2015), 高色純度の蛍光が要求される広色 域ディスプレイの光源として期待されている. 本材料は、ナノサイズのハロゲン化鉛ペロブス カイト結晶 (ABX₃, A = Cs⁺, CH₃NH₃⁺ (MA), $NH_2CHCH_2^+$ (FA), $B = Pb^{2+}$, $X = Cl^-$, Br^- , I^-) \geq , その表面に生じる欠陥を補填する配位子からな る量子ドットの一種である、PeODs は、イオ ン性結晶であるため、極性溶媒に前駆体試薬を 溶解させ、貧溶媒と混ぜ合わせることで、溶解 度差を活用して簡便に合成が可能であり, Ligand-assisted reprecipitation (LARP) 法として 広く研究され(Zhang et al., 2015), 連続フロー プロセスへの応用もされている.しかし,系内 には、PeQDs を溶解させる極性溶媒が必然的 に含まれるため、複数の精製プロセスを経る必 要がある. さらに、PeQDsのハロゲンとして ヨウ素を含む場合,前駆体のヨウ化鉛(II)が 極性溶媒と錯体を形成するため、PeQDsの構 造安定性が著しく低下してしまう (Zhang et al., 2017).

先行研究では、極性溶媒を含まない PeQDs の作製法として、遊星ボールミルを用いた粉砕 法が報告されている (Protesescu et al., 2018). この手法の特徴は、極性溶媒に関連する諸問題 を解決できる上、工業的な実績もある手法であ るため、実用性が極めて高いことである.しか し、PeQDs の合成に応用した際には、粉砕経 過に伴う粒子の凝集や、融着が生じ、PeQDs のサイズ単分散化が困難であった.量子ドット は、そのサイズと発光波長の間に量子閉じ込め 効果に従う依存性を示す (Protesescu L. et al., 2015).したがって、PeQDsのサイズ単分散化は、 光学特性を左右する非常に重要な要素である.

そこで、この課題を解決するため、申請者ら は「超音波ビーズミル法」を考案した.本手法 は、粉砕法とベースとした「硬質ビーズによる 粉砕」と「超音波振動による分散」を組み合わ せた独創的な合成法である. 超音波により粒子 の凝集と融着を抑制することで、粒子の分散状 態を維持したまま結晶の粉砕が可能になる.本 研究では、粉砕条件の検討による発光特性の向 上と、シミュレーションによる粉砕メカニズム の解明、発光デバイスの作製・評価を一貫して 実施した.「粉砕条件の検討による発光特性の 向上」では、PeQDs 分野において広く研究対 象とされている MAPbBr₃ PeQDs 及び、従来の LARP での合成が困難であったヨウ素を含有す る MAPbl₃ PeODs を合成した. また、「シミュ レーションによる粉砕メカニズムの解明」、「発 光デバイスの作製・評価」においては, MAPbI₃ PeQDs を対象とし,既存手法に対する 超音波ビーズミル法の高い優位性を明らかにし た.

研究方法

1. 超音波ビーズミルによる PeQDs の作製

MAPbBr₃ PeQDs の合成: PeQDs の前駆体と して, PbBr₂(II) 18.9 mg, MABr 5.8 mg, 配位子 としてオレイン酸 200 µL, オレイルアミン 24 µL, さらに分散媒としてトルエン 10 mL を スクリュー管に加えた. 同一スクリュー管に対 し、粉砕用のジルコニアビーズ (φ = 50 µm) を加えた. このスクリュー管内に超音波ホモジ ナイザーを挿入して超音波を照射し、PeODs を作製した. ここでは粉砕条件の検討として, ジルコニアビーズ量と超音波照射時間を検討し た、ジルコニアビーズ量の検討では、超音波照 射時間を30分に固定し、ジルコニアビーズを、 前駆体重量に対して 0, 25, 50, 100, 200 倍の 重量で添加し, 各条件を0 mass, 25 mass, 50 mass, 100 mass, 200 mass として得られた PeQDs の光学特性を比較した. 超音波照射時 間に関しては、各ジルコニアビーズ量条件下で、

15, 20, 25, 30, 40分の5条件で検討した.

PeQDsの作製後,粗大結晶及びジルコニア ビーズを遠心分離で除去・精製し, PeQDs分 散液を得た.

MAPbI₃ PeQDs の 合成:前述の MAPbBr₃ PeQDs の合成を一部改良し,実施した.使用 する前駆体と配位子を PbI₂(II) 18.4 mg, MAI 5.1 mg, オレイン酸 10 μL,オレイルアミン 10 μL に変更して PeQDs を作製した. MAPbI₃ PeQDs は, MAPbBr₃ PeQDs とは反応性が異な るため,ジルコニアビーズ量を,前駆体重量に 対して 0,40,80,120,200,300 倍の重量とし, 各条件を 0 mass,40 mass,80 mass,120 mass, 200 mass,300 mass とした.超音波照射時間に 関しては,各ジルコニアビーズ量条件下で, 10,20,30,40,50 分の5条件で検討した.

シミュレーションによる粉砕メカニズムの解明

シミュレーションは、東北大の加納 純也 教 授と久志本 築 助教のご協力の下,実施した. ここでは、離散要素法(DEM: Discrete Element Method)を採用し、超音波ビーズミル法にお ける超音波駆動力と流体挙動を解析した後、 ビーズ挙動を解析した.

ビーズ挙動について、図1にシミュレーショ ン条件を示した.ここでは、流体挙動とDEM を用いて、ビーズ挙動の解析を行った.また、 PeQDsの反応場を明らかにするため、解析し たビーズ挙動のうち各ビーズの並進速度から、

Fl	uid			
Density	[kg/m³]	$1.0 imes 10^{3}$		
Viscosity	[Pa·s]	1.0×10 ⁻³		·····¥···
Volume viscosity	[Pa·s]	2.40×10 ⁻³	• 30	mm
Sonic speed, Co	[m/s]	14,800	++ 3 mm	45 m
Ultra	sound		15 mm	
Frequency, f	[Hz]	20,000		
Amplitude (p-p), A	[m]	135.0×10 ⁻³	 Frequency: 20kHz Amplitude: 91 ~ 182 um 	φ=3 mm]
Velocity amplitude, V_0	[m/s]	2π fA	Power: 130 W	-
Wavelength, λ	[m]	Cd f		49 mm
Wave number, k	[m ⁻¹]	2π f/ C ₀	93	mm

Fig. 1 Simulation conditions.

系内の衝突エネルギーの頻度分布を算出し, ビーズ量と衝突エネルギーの関係性を調査した. 最後に,添加ビーズ量ごとの衝突エネルギー と PeQDs の光学特性との相関を調査した.

3. PeQDs を用いた LED デバイスの作製

正孔注入層材料として、PEDOT:PSS(55wt%) を,洗浄した ITO 基板上にスピンコートし、 150°C で 10 分間焼成した.この上に,正孔輸 送層材料として、Poly-TPD(クロロベンゼン 溶液、4 mg/ml)をスピンコートで成膜し、 100°C で 10 分間加熱した.MAPbI₃ PeQD(オ クタン分散液、10 mg/ml)を、窒素雰囲気下で、 2000 rpm、30 秒のスピンコート条件で poly-TPD 上に成膜した.電子輸送・注入材料として、 TPBi(50 nm),Liq(1 nm),金属電極として Al(100 nm)を高真空条件(1 × 10⁻⁵ Pa)で蒸 着し、LED デバイスを作製した.

研究成果

1. 粉砕条件の検討による発光特性の向上

研究方法にて記載したように、本項では、粉 砕条件の検討として、ジルコニアビーズ量と超 音波照射時間を検討した。

得られたMAPbBr₃ PeQDs および MAPbI₃ PeQDs について、ビーズ量・超音波照射時間 ごとの PeQDs の PLQY・発光ピーク強度の変 化を示した(図2). すべてのサンプルにおいて、 ビーズ量・超音波照射時間の増加に伴い、 PLQY が増加することを明らかにした. さらに、 ビーズ量が多いほど、PeQDs の PLQY が最大 化するまでにかかる時間が短縮されることが明 らかになった.

MAPbBr₃ PeQDs について,その粒度分布を 図 3 に示した. PLQY の増加挙動と同様に,ビー ズ量の増加に伴い,粒径の均一性が向上してい ることが明らかになった.ビーズ量が増加する ことで,粉砕過程における PeQDs の凝集抑制 が強く働くと考えられる.特に,200 mass にお いて,7.2 ± 1.1 nm という非常に狭い粒度分布

Fig. 2 PLQY variation of PeQDs by zirconia bead volume and milling time (a) MAPbBr₃ PeQDs and (b) MAPbI₃ PeQDs.

Fig. 3 Size distribution histogram of colloidal MAPbBr₃ PeNCs from the DLS analysis with varying the bead mass for 25 mass, 50 mass, 100 mass, and 200 mass.

の PeQDs を得ることに成功した.

得られた PeQDs の光学特性と粒度分布より, 系内に投入されたビーズは, PeQDs 前駆体から PeQDs への反応を促進していると考えられ る.また, PeQDs の PLQY は,その結晶性や 表面欠陥,反応進行率等に依存すること知られ ている.ビーズ量 200 mass,粉砕時間 30 分以 上で PLQY が最大値に達し,かつ粒径が均一 な PeQDs を得られたことから,この条件下に おいて前駆体から PeQDs への反応が完了して いると考えられる.したがって,本研究では, ビーズ量 200 mass,粉砕時間 30 分を最適な PeQDs の作製条件として見出した.

2. 粉砕条件の検討による発光特性の向上

系内の衝突エネルギーの頻度分布から,ビー ズ量ごとに衝突エネルギーの総和を計算し,プ ロットしたものを図4に示す.

図4では、ビーズ量200倍を境に衝突エネル ギーの上昇が大きい領域(青)と小さい領域(橙) の二つに分かれた.この図から、ビーズ量 200 mass 以上では、衝突エネルギー、すなわち 前駆体の粉砕効率が上がりづらくなる可能性が 示唆された.さらに、超音波ビーズミル法で作 製した PeQDs の PLQY とシミュレーションに より算出した衝突エネルギーとの関係を図5 に 示した.

図5から、PeQDsのPLQYと系内の衝突エ

Fig. 4 Dependence of impact energy and bead volume.

研

Fig. 5 Relationship between impact energy and PLQY of PeQDs.

Fig. 6 (a) electro luminescence spectra over electric current, (b) luminance–voltage characteristic, and (c) an external quantum efficiency-current density plot of the LED containing MAPbI₃ PeQDs.

ネルギーとの間に線形の相関が得られた. これ により,得られる PeQDs の PLQY は,系内の 衝突エネルギーから予測可能であることを明ら かにした.

以上より,超音波ビーズミル法におけるビー ズ量と衝突エネルギー,PLQYの関係性を見い だし,ビーズ量 200 mass における PeQDs の作 製が最も効率的に高い PLQY を実現できる条 件であることを明らかにした.また,これら結 果は、前述の実験結果を裏付けるものである.

3. PeQDs を用いた LED デバイスの作製

図6に作製した LED の特性評価結果を示した.

LED の輝度 – 電圧特性,QE 特性から,最大 輝度 (L_{max}) 5.6 cd/m² と外部量子収率(EQE) 3.2% を確認した.本結果は,MAPbI₃ PeQDs を導入 した赤色発光 LED の中で最大の発光効率であ り,特に,従来のLARP 法にて作製した赤色 発光 LED (輝度 0.42 cd/m², EQE 1.8%) と比 較して,2倍程度の発光効率の高性能化を達 成した (Ji et al., 2021; Hassan et al., 2019; Vashishtha et al., 2020).

以上の結果より、PeQDsの作製法として超 音波ビーズミル法が、従来の粉砕法の課題を克 服し、優れた光学特性と粒子均一性を示す PeQDsの作製可能であることを示した.さらに、 他の作製法と比較しても、非常に高い優位性を 持つことを明らかにした.

参考文献

- Hassan Y., Ashton O.J., Park J.H., Li G., Sakai N., Wenger B., Haghighirad A.A., Noel N.K., Song M.H., Lee B.R., Friend R.H., Snaith H.J., Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices, Journal of the American Chemical Society, 141 (2019) 1269–1279. https://doi.org/10.1021/jacs.8b09706
- Ji K., Anaya M., Abfalterer A., Stranks S.D., Halide perovskite light-emitting diode technologies, Advanced Optical Materials, 9 (2021) 2002128. https://doi.org/10.1002/adom.202002128
- Protesescu L., Yakunin S., Bodnarchuk M.I., Krieg F., Caputo R., Hendon C.H., Yang R.X., Walsh A., Kovalenko M.V., Nanocrystals of cesium lead halide perovskites (CsPbX₃, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Letters, 15 (2015) 3692–3696.

https://doi.org/10.1021/nl5048779

Protesescu L., Yakunin S., Nazarenko O., Dirin D.N., Kovalenko M.V., Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling, ACS Applied Nano Materials, 1 (2018) 研

究

助

成

1300-1308. https://doi.org/10.1021/acsanm.8b00038

- Vashishtha P., Bishnoi S., Li C.H.A., Jagadeeswararao M., Hooper T.J.N., Lohia N., Shivarudraiah S.B., Ansari M.S., Sharma S.N., Halpert J.E., Recent advancements in near-infrared perovskite light-emitting diodes, ACS Applied Electronic Materials, 2 (2020) 3480–3490. https://doi.org/10.1021/acsaelm.0c00825
- Zhang F., Huang S., Wang P., Chen X., Zhao S., Dong Y., Zhong H., Colloidal synthesis of air-stable CH₃NH₃PbI₃

外部発表成果

口頭・ポスター発表

1. 本村 秀磨, "シミュレーションを用いた超

quantum dots by gaining chemical insight into the solvent effects, Chemistry of Materials, 29 (2017) 3793– 3799. https://doi.org/10.1021/acs.chemmater.7b01100

Zhang F., Zhong H., Cheng C., Wu X.-G., Hu X., Huang H., Han J., Zou B., Dong Y., Brightly luminescent and color-tunable colloidal CH₃NH₃PbX₃ (X = Br, I, Cl) quantum dots: potential alternatives for display technology, ACS Nano, 9 (2015) 4533–4542. https://doi.org/10.1021/acsnano.5b01154

音波ビーズミル法によるペロブスカイト量
子ドットの高性能化",第17回有機デバイス・物性院生研究会(Yamagata, Jul., 20–22, 2022) P1-01.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 52-57 /https://doi.org/10.14356/hptf.21105

HPTF21105

加圧焼結による欠陥収縮過程の放射光 X 線 CT 観察

Synchrotron X-ray CT Observation of Morphological Evolution of Defects by Pressure-Assisted Sintering

研究代表者 Research leader: 大熊 学

学 Gaku OKUMA

国立研究開発法人物質・材料研究機構 構造材料研究センター 主任研究員 Research Center for Structural Materials, NIMS, Senior Researcher E-mail: okuma.gaku@nims.go.jp

常圧焼結では大きな亀裂状欠陥は収縮せず,むしろ,わずかに成長する.理論的にも,小さな空隙 や欠陥は収縮するが,成形段階で形成された粗大欠陥を常圧焼結で除去することは困難である.一 方,ホットプレス(HP)や放電プラズマ焼結(SPS)等の加圧焼結では,比較的低温で,緻密な微 細組織を有する高強度・高信頼性セラミック部材が製造でき,また内部欠陥の除去により透明セラ ミックスの製造も可能となる.ただし,加圧焼結では高圧力が必要で,比較的小型の単純形状部材 しか製造できないという問題がある.このため,複雑形状大型部材の製造に適した常圧焼結では粉 体成形プロセス中に形成される欠陥寸法を抑制し焼結中に除去することが,また,加圧焼結では大 型部材製造のために,より低い圧力でも欠陥除去ができるように,3次元マルチスケールでの欠陥 消失過程の解明が求められる.本研究では SPS 中にどのように気孔と欠陥の形状が変化・消失し ていくかを観察する.

抄 録

ABSTRACT

The mechanical reliability of products must be assured for scaling up and production of complex-shaped components by spark plasma sintering (SPS) of spray-dried granules. The evolution of morphologies of pores and defects, which control the mechanical strength, is investigated by using synchrotron X-ray multiscale to-mography during SPS of alumina granules at 1300°C. While large defects arising from the hierarchical granule packing structure cannot be removed by pressureless sintering, crack-like defects and branched rodlike defects are almost eliminated by SPS at stresses higher than 30 and 50 MPa, respectively. But, small ellipsoidal porous regions, which may arise from aggregates or dimples of granules, cannot be removed even at a pressure of 50 MPa. A very large defect is also found by using micro-CT. It is supposed that this defect is formed from a large void in loosely packed granules. The shrinkage of large voids and the elimination of crack-like defects are explained by the theoretical prediction based on the continuum theory of sintering.

<u>研究背景と目的</u>

焼結は成形した粉体を加熱して複雑形状部品 を製造する技術である、しかし、粉体成形過程 での粒子充填の不均質性により焼結中の収縮速 度に違いが生じ、内部応力が発生して、空隙/ 気孔や亀裂が形成されることがある. セラミッ クスは脆性材料であるため、内部欠陥により強 度が著しく低下する.また.不均一な収縮のた め焼結体の寸法精度が低下する. すなわち、製 品の強度信頼性を向上させ、製品寸法の高精度 化を図るには、粒子充填構造をもとに、 焼結中 の微視的・巨視的な不均質性・欠陥の形成過程 を理解し、予測、制御する理論、技術体系の確 立が不可欠である.これまで、焼結における成 形体の巨視的な収縮は、連続体力学にもとづく シミュレーションによって予測されてきた. 焼 結中の収縮挙動、巨視的寸法変化はひずみ速度 によって与えられる. 現実にはミクロスケール では膨大な数の粒子の集合体の気孔構造が複雑 な変化をする.しかし、ミクロスケールと巨視 的(マクロ)スケールをつなぐ理論的,実験的 知見がほとんど得られていない. そこで, 焼結 現象を巨視的に捉えるだけでなく、粒子スケー ル、ミクロスケールでの不均質構造を関連づけ る「代表体積要素 (RVE)」の概念を導入した (Okuma et al., 2016). RVE は、ミクロ~メゾ~ マクロのマルチスケール解析の基盤となる.

近年, X線トモグラフィー (CT) 技術の進 歩により, 直径数十µmのガラス粒子 (Bernard et al., 2005) や金属粒子 (Vagnon et al., 2008) を用いたモデル実験で, 焼結中の複雑な3次元 気孔構造変化を粒子スケールで直接観察可能と なった. ただし, 実際のセラミックス内部の亀 裂状欠陥は, 当時のCTでは分解能が不足し, 3次元観察した報告例がなかった. 最近, 広視 野で低解像度のマイクロCTと, 狭視野で高解 像度である位相差高エネルギーX線ナノCTか らなるマルチスケールX線CTが大型放射光施 設 SPring-8の竹内らによって開発された (Takeuchi et al., 2018). このマルチスケールCT システムは、亀裂開口変位(COD)が非常に 小さい亀裂状欠陥の観察に適している. 試料全 体の欠陥分布をマイクロ CT で調べることによ り、内部欠陥の位置を特定する. ナノ CT によ る非破壊観察では特定の欠陥の形状を観察でき る. 大熊ら(Okuma et al., 2019)は、この放射 光 X線 CT を用い、サブミクロン粒径の1次粒 子を造粒したアルミナ顆粒から製造した焼結体 内部の亀裂状欠陥の3次元構造の高解像度観察 に成功した(図 2(f)).

常圧焼結では大きな亀裂状欠陥(II型, III型) は収縮せず,むしろ,わずかに成長することを 見いだし,その原因が成形体組織の不均一性に 起因する焼結中の収縮速度差であることを示し た(Okuma et al., 2019).理論的にも,小さな 空隙や欠陥は収縮するが,成形段階で形成され た粗大欠陥を常圧焼結で除去することは困難で ある.

一方, ホットプレス (HP) や放電プラズマ 焼結 (SPS) 等の加圧焼結では、比較的低温で、 緻密な微細組織を有する高強度・高信頼性のセ ラミック部材が製造でき,また内部欠陥の除去 により透明セラミックスの製造も可能となる. ただし、加圧焼結では高圧力が必要で、比較的 小型の単純形状部材しか製造できないという問 題がある.このため、複雑形状大型部材の製造 に適した常圧焼結では粉体成形プロセス中に形 成される欠陥寸法を抑制し焼結中に除去するこ とが、また、加圧焼結では大型部材製造のため に、より低い圧力でも欠陥除去ができるよう、 3次元マルチスケールでの欠陥消失過程の解明 が求められる、そこで、本研究では SPS 中に どのように気孔と欠陥の形状が変化・消失して いくかを観察する.

研究方法

本研究は SPring-8 のビームライン BL20XU の放射光 X 線マルチスケール CT (Takeuchi et al., 2018)を用いて実施した.放射光とは光速 に近い速度の電子が磁場によって方向を変えら

Fig. 1 Schematic image of synchrotron X-ray multiscale CT at SPring-8 (BL20XU). Adapted from Ref. (Okuma et al., 2019). Copyright: (2019) The Authors, published by Springer Nature.

れた際に発生する電磁波であり、X線から赤外 線までの広い波長領域を含み、極めて明るく平 行性が高いという特長がある。図1にビームラ インの実験セットアップを示す.マイクロCT は第一実験ハッチ内の試料ステージとX線画 像検出器で構成され, 試料を透過した X 線像 を直接画像検出器で撮像する(図1(a)).ナノ CT の光学系 (図 1(b)) は X 線結像顕微鏡をベー スとしている. コンデンサー・ゾーン・プレー ト (CZP) で X 線を試料上に一様に集光照明し、 試料を透過したX線をフレネル・ゾーン・プレー ト(FZP)対物素子で拡大し、その拡大像を画 像検出器で撮像して空間分解能を向上させる. CT 計測では試料を 0.1°ごとに 0~180°まで回 転させながら透過像を得る.いずれの測定モー ドも測定時間は8分程度である.透過像から三 次元画像への再構成は Radon 変換により行わ れ、8分程度で処理が可能である、マイクロ CTの画素サイズは0.5 µm, 視野は約1 mm, ナノCTの画素サイズは60nm, 視野は約 60 µm である. 使用した X 線のエネルギー 20 keV である.

研究成果

1. 顆粒由来の欠陥構造

図2にマイクロCTで観察したアルミナ顆粒

- Fig. 2 Various types of defects in pressureless sintered alumina: (a)–(e) FE-SEM, (f) micro-CT. (g) Schematic image of granules packing by powder compaction at high pressure (≈200 MPa).
 - (a)-(e), and (g) are adapted from Ref. (Okuma et al., 2023). Copyright: (2023) The Authors, published by Wiley. (f) is adapted from Ref. (Okuma et al., 2019). Copyright: (2019) The Authors, published by Springer Nature.

(大明化学 DS31) 焼結体(相対密度 98%) 内 部の欠陥構造の FE-SEM 像 (a)-(e) (Okuma et al., 2023), 3次元像 (f) (Okuma et al., 2019) と 模式図(g) (Okuma et al., 2023) を示す.図 2(a)-(c) は, それぞれ, 分岐亀裂状欠陥 (Type II),半円形亀裂状欠陥(Type III),球状欠陥(Type I) である. これらの欠陥はマイクロ CT 像図 2(f) でも見られる. 球状欠陥 (Type I) は不規 則に分布している.分岐亀裂状欠陥(Type II) と半円形亀裂状欠陥 (Type III) は、それぞれ 顆粒間の境界と顆粒内の中空構造から形成され た. これらのうち, Type II と Type III は破壊強 度を支配する欠陥であり, 亀裂開口変位は 0.6 µm 以下である.一方, SEM 像図 2(c) で見 られる球状欠陥はとても小さいので破壊強度に 影響を与えない、加えて、小さな局所的な多孔 領域;複雑な気孔(図2(d))と楕円体気孔領域 (図2(e))が見られた.これらの多孔領域は相 互に繋がった気孔構造または小さな気孔の凝集 体である.複雑な気孔(図2(d))は原料粉末に 含まれる凝集体または顆粒の4重点の多孔領域 から生成したものであると考えられる. 楕円体 の多孔領域(図 2(e))は楕円体形状の大きな複 雑な気孔である.マイクロ CT は分解能が高く ないので、これらの複雑な気孔や多孔領域はす

べて球状欠陥として検出されるが,実際に Type I のような欠陥はそれほど多くない.これ ら Type I-III 欠陥および複雑な気孔の起源は模 式図 2(g) にまとめた.

2. 加圧焼結中の欠陥構造の消失過程の観察

理論的にも,小さな空隙や欠陥は収縮するが, 成形段階で形成された粗大欠陥を常圧焼結で除 去することは困難である.一方,ホットプレス (HP) や放電プラズマ焼結 (SPS) 等の加圧焼 結では、比較的低温で緻密な微細組織を有する 高強度・高信頼性のセラミック部材が製造でき, また、内部欠陥の除去により透明セラミックス の製造も可能となる.ただし、加圧焼結では高 圧力が必要で、比較的小型の単純形状部材しか 製造できないという問題がある. そこで, 加圧 焼結では大型部材製造のために、より低い圧力 でも欠陥除去ができるような3次元マルチス ケールでの欠陥消失過程の解明が求められる. 本項では前節で使用したアルミナ顆粒(大明化 学DS31)を用いて,通電加圧焼結(SPS)中 にどのように気孔と欠陥の形状が変化・消失し ていくかを観察した.常圧焼結前の顆粒充填の 際に冷間等方圧加圧(CIP)を~200 MPaで行 うことにより、顆粒は完全に潰れて変形する(図 2(g))のに対し, SPS 前はカーボン型に粉末を 充填し低荷重で一軸加圧をするため、顆粒充填

構造は模式図 3(a) のようになる (Okuma et al., 2023). 顆粒の三重線に沿った三角形状の隙間 が残る. SPS 30 MPa 後,常圧焼結後に見られ たような亀裂状欠陥(Type II, Type III) は完全 に消失したが、代わりに放射光 CT ではロッド 状の欠陥が見られた(図 3(b)). なお、SEM で 観察したロッド状欠陥の断面像は円形ではなく 三角形状である. これらのロッド状欠陥は SPS 50 MPa では裂断し, 消滅した. ただし, SPS 50 MPa においてもマイクロ CT では球状欠陥 として検出される複雑な欠陥や楕円体の多孔領 域は残留した. これらの形状はナノ CT で, 詳 細な3次元構造を観察することができた(図 **3(c)**, (d)). 一部の楕円体の多孔領域は周囲との 隙間によって囲まれていた(図 3(d)). 図4に SPS 50 MPa 後の欠陥の空間分布のナノ CT 像 を示す. 楕円状の多孔領域は加圧方向に対して 垂直な面内にある. 楕円体多孔領域は圧縮され た顆粒の窪みから形成される(図3(a)).他に, それらは原料粉末中に含まれる凝集体から形成 された可能性もある. そのような多孔領域は SPS 中の緻密化の間,異方的に変形する.複雑 な気孔の繋がった気孔構造は図4中の白い四角 内でも見られる. 複雑な気孔や楕円多孔領域は SPS 50 MPa 後も残留してしまったが、それら はとても小さいので破壊に寄与する欠陥になる とは考えにくい.

Fig. 3 (a) Schematic image of granules packing by powder compaction at low pressure (30 MPa), (b) branched rodlike defects (30 MPa), (c) complex pore (50 MPa), (d) cross section of ellipsoidal porous region with circumferential gap (50 MPa). Adapted from Ref. (Okuma et al., 2023). Copyright: (2023) The Authors, published by Wiley.

破壊強度を予測するには、試料の全体積中の

<sup>Fig. 4 Nano-CT image of small defects in SPS 50 MPa:
(a) Top view; (b), (c) Side view from the view direction of white arrows in (a). The pressing direction is indicated by red arrows. Adapted from Ref. (Okuma et al., 2023). Copyright: (2023) The Authors, published by Wiley.</sup>

Fig. 5 Largest defect larger than 100 μm found in a cylindrical sample after SPS at 50 MPa. This defect was enclosed by some granules in the cross section. The pressing direction is vertical. Adapted from Ref. (Okuma et al., 2023). Copyright: (2023) The Authors, published by Wiley.

最大欠陥を検出する必要があり、マイクロ CT は強力な手法となる. SPS 50 MPa 後において 100 µm を超える超粗大欠陥が見つかった(図 5). 粗大欠陥の単層断面図では、50 MPa 負荷 加圧後でも形が残る顆粒間の相互に繋がった隙 間が観察された.このような欠陥は極めて希少 で. SPS 30 MPa 後の試料内では見つからなかっ た. こうした欠陥は負荷加圧の小さい場合にお ける. 初期の緩い充填において形成されると考 えられる. Cottrinoら (Cottriono et al., 2013) はこうした緩い充填構造においては、顆粒寸法 の数倍以上の大きな隙間が形成されることを報 告している。したがって、中圧力における SPS の際には、初期に見られる大きな隙間は潰れて 平たくなるが、大きな欠陥として残ってしまう と考えられる.実際、このような大きな欠陥を SPS において完全に除去するには 100 MPa 以 上の一軸加圧が必要であるとされている.

参考文献

- Bernard D., Gendron D., Heintz J.-M., Bordère S., Etourneau J., First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography, Acta Materialia, 53 (2005) 121–128. https://doi.org/10.1016/j.actamat.2004.09.027
- Cottrino S., Jorand Y., Maire E., Adrien J., Characterization by X-ray tomography of granulated alumina powder during in situ die compaction, Materials Characterization, 81 (2013) 111–123.

https://doi.org/10.1016/j.matchar.2013.04.004

- Okuma G., Kadowaki D., Shinoda Y., Akatsu T., Guillon O., Wakai F., Determination of the size of representative volume element for viscous sintering, Journal of the Ceramic Society of Japan, 124 (2016) 421–425. https://doi.org/10.2109/jcersj2.15275
- Okuma G., Watanabe S., Shinobe K., Nishiyama N., Takeuchi A., Uesugi K., Tanaka S., Wakai F., 3D multiscaleimaging of processing-induced defects formed during sintering of hierarchical powder packings, Scientific Reports, 9 (2019) 11595.

https://doi.org/10.1038/s41598-019-48127-y

Okuma G., Endo M., Minagawa H., Inoue R., Kakisawa H., Kohata T., Osada T., Yamamoto T., Azuma M., Takeuchi A., Uesugi M., Guillon O., Wakai F., 3D visualization of morphological evolution of large defects during spark plasma sintering of alumina granules, Advanced Engineering Materials, 25 (2023) 2201534.

https://doi.org/10.1002/adem.202201534

Takeuchi A., Uesugi K., Uesugi M., Yoshinaka F., Takashi, Nakamura, Nondestructive multiscale X-Ray tomography by combining microtomography and high-energy phase-contrast nanotomography, Microscopy and Microanalysis, 24 (2018) 106–107.

https://doi.org/10.1017/S1431927618012928

Vagnon A., Rivière J.P., Missiaen J.M., Bellet D., Di Michiel M., Josserond C., Bouvard D., 3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography, Acta Materialia, 56 (2008) 1084–1093.

https://doi.org/10.1016/j.actamat.2007.11.008

外部発表成果

論文発表

- Okuma G., Endo M., Minagawa H., Inoue R., Kakisawa H., Kohata T., Osada T., Yamamoto T., Azuma M., Takeuchi A., Uesugi M., Guillon O., Wakai F., 3D visualization of morphological evolution of large defects during spark plasma sintering of alumina granules, Advanced Engineering Materials, 25 (2023) 2201534. https://doi.org/10.1002/adem.202201534
- Okuma G., Wakai F., Synchrotron X-ray multiscale tomography: visualization of heterogeneous microstructures and defects in ceramics, Journal of the American Ceramic Society, 107 (2024) 1706–1724.

https://doi.org/https://doi.org/10.1111/jace.19366

口頭・ポスター発表

- 大熊 学,皆川 開,井上遼,垣澤 英樹,長田 俊郎,若井 史博,"通電加圧焼結中の欠陥形状変化の放射光 X線 CT 観察",日本機械学会年次大会2023(Tokyo, Sept. 3–6,2023) J042-07. https://confit.atlas.jp/guide/event/jsme2023/subject/J042-07/detail
- 大熊 学,皆川 開,井上遼,垣澤 英樹,長田 俊郎,若井 史博,"放射光 X線 CT を用いた通電加圧焼結中の欠陥形状変化の3次元観察",日本セラミックス協会2024年年会(Kumamoto, March 14–16, 2024)1M22. https://nenkai2024.ceramic.or.jp/

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 58-64 /https://doi.org/10.14356/hptf.21106

HPTF21106

固体電解質ナノ粒子の生成メカニズムの解明と高速合成

Elucidation of Formation Mechanism of Solid Electrolyte Nanoparticles and High-Speed Synthesis

研究代表者 Research leader: 大崎 修司 Shuji OHSAKI 大阪公立大学大学院工学研究科 准教授

> Graduate School of Engineering, Osaka Metropolitan University, Associate Professor E-mail: shuji.ohsaki@omu.ac.jp

抄 録

全固体リチウムイオン二次電池は、その優れた安全性などから次世代の二次電池として期待されている。その製造工程で、粒子間の接触界面を大きくし、粒子の流動性を向上させる必要がある。また、固体電解質の粒子形状は、接触界面の増大と流動性向上で重要な役割を果たす。Li₃PS₄(LPS)は固相反応だけでなく、液相で合成されることから高い生産性という利点を有する。しかし、粒子サイズと形状を制御するメカニズムはまだ明らかにされていない。本研究では、ホットスターラーと超音波ホモジナイザーを用いて液相中で LPS 粒子を合成し、反応温度と衝撃力が反応時間と粒子形状に及ぼす影響を検討した。ホットスターラーを利用し、イオン伝導度が 1.3 × 10⁴ S/cm と高い LPS 粒子を 67℃ で 60 分かけて合成できることが示された。この合成法は、従来の液相振とう法(6 時間)よりも大幅に高速であった。また、LPS の粒子形状は、反応過程における衝撃エネルギーによって決定されることを見い出した。さらに、異なる合成法を組み合わせることにより、高いイオン伝導性を有する形状制御粒子の合成に成功した。本研究で得られた結果は、特定の粒子形状と粒子サイズを得るために合成条件を最適化するための貴重な知見である。

ABSTRACT

All-solid-state lithium-ion batteries are promising next-generation secondary batteries, primarily because of their superior safety. In their production process, it is necessary to achieve large contact interfaces between the particles and improve particle fluidity. The particle shape of the solid electrolyte plays a key role in addressing these requirements. Li_3PS_4 (LPS) is synthesized in the liquid phase and offers the advantages of cost-effectiveness and production scalability. However, the mechanisms controlling particle size and shape have not yet been revealed. In this study, we synthesized LPS particles in the liquid phase using a hot stirrer and an ultrasonic homogenizer to investigate the effects of reaction temperature and impact force on the reaction time and particle shape. We successfully synthesized shape-controlled particles with high ionic conductivity by combining different synthesis methods. This study provides valuable data for optimizing the synthesis conditions to attain specific particle shapes and sizes.

研究背景と目的

全固体リチウムイオン二次電池 (ASS-LiB) は、大容量、高エネルギー密度、安全性の向上 により、次世代の二次電池として期待されてい る. 有機電解質を利用する従来のリチウムイオ ン二次電池とは異なり、ASS-LiBs は難燃性の 無機固体電解質で構成されており, 安全性が大 幅に向上する^[1]. ASS-LiBs は Li⁺ イオンを伝 導する固体電解質(SE)と活物質(AM)の複 合構造を持つ電極で構成される。 高容量化に向 けては AM と SE を高密度に充填して、両者の 間に大きな接触界面を形成する必要である.こ のとき,SEのサイズと形状は,AMとSEの接 触界面を大きくする上で重要な役割を果たす. 例えば,同じ形状の粒子で電池を満たした場合, 電池構造内に複数の空隙が形成される可能性が ある.しかし、小さな粒子を混合することで、 空隙を埋め、電池全体の密度を高めることがで きる. 我々のシミュレーション研究では、 粒径 比1:4の球状粒子を混合することで、ボイド の発生が最小限に抑えられることを実証してい る^[2]. さらに, AM 粒子周辺の空隙を小さな SE 粒子で埋めることで、接触面積が大きくな ることが予見される.また,SEの粒子形状も, ASS-LiBs の実用化と製造のために考慮しなけ ればならない重要な要素である.

β-Li₃PS₄ (LPS) は,比較的高いイオン伝導 性と安定性を示す硫化物 SE の一種である^[3]. 近年,LPS 粒子の液相合成が報告されており, 反応時間が短く,反応温度が低く,量産化に適 している^[4].液相合成では,Li₂S と P₂S₅が有 機溶媒中で反応し,前駆体が形成される.その 後,250°C 以下の温度で前駆体からLPS が合成 される^{[5],[6]}.液相合成の一種である液相振とう 法では,直径が約 1–10 µm のLPS 粒子が生成 する^[7].さらに,これまでの我々の研究で,粉 砕や溶解 – 沈殿プロセスで調製した微細 Li₂S 粒子を用いて,LPS 粒子のサイズを制御できる ことを明らかにしている^[8].先に述べたように, 粒子形状は,AM と SE 間の良好な接触界面の 形成,ならびに粒子の流動性に影響を及ぼす重 要な因子である.しかしながら,液相合成中の 粒子径と形状制御を支配する詳細なメカニズム は,まだ十分に解明されていない.

本研究では、温度制御を伴うホットスター ラーと、より強い衝撃を与える超音波ホモジナ イザーを用いて、液相でLPS を合成した.本 研究の第一の目的は、反応温度の影響と、それ がLPS の反応時間と粒子形状に及ぼす影響を 検討することである.時間経過に伴う粒子成長 を観察し、反応温度を変化させた場合の反応速 度から合成の活性化エネルギーを推定した.さ らに、超音波法ホモジナイザーを用いて粒子形 状への影響を調べた.さらに、これら2つの方 法を組み合わせることで、粒子径と反応時間の 両方を制御することを目指した.

研究方法

1. 材料

LPS 合成の原料として、Li₂S(三和ケミカル 株式会社,99%) および P_2S_5 (Sigma-Aldrich Co. LLC.), 溶媒としてプロピオン酸エチル(EP, Sigma-Aldrich Co. LLC.)を用いた.

2. ホットスターラーと超音波ホモジナイザー を用いた LPS 合成

Li₂S (0.3828 g), P₂S₅ (0.6172 g), EP (10 mL) をバイアル (φ 30 mm, 50 mL)と試験管 (φ 13 mm) に入れ, グローブボックス内で混合した. LPS 前駆体は, 原料と溶媒から 3 つの異なる手順で 合成した. まず, バイアル瓶をパラフィルムと プラスチック・テープで密封し,混合物をグロー ブボックスの外で 20 mm のバーを用いて 1300 rpm で 10–90 分間撹拌した. 温度は 28–78°C (設定温度: 30–160°C)の範囲で変化 させた. また, 試験管内の原料混合物を最大出 力で 30~120 分間超音波照射 (UH-50, SMT)し, LPS 前駆体を合成した. 溶媒に超音波を照射す ると,温度は 15 分以内に約 67°C まで上昇した. さらに, ホットスターラーを用いて 53°C (設 定温度は 95°C), 1300 rpm で 60 分間 LPS 前駆 体を合成した.得られた懸濁液は,遠沈管中で 振とうミキサーを用いて 1500 rpm で 2 時間液 相振とうした後,超音波を 30 分間照射した. その後,3つの異なる手順で合成した LPS 前駆 体を遠心分離(13000 rpm,15 分間)し,上清 を除去した.LPS 粒子を得るため,得られた沈 殿物を真空下で1時間乾燥させ,200°C で 2 時 間加熱した.以上の操作は全てグローブボック ス内で行った.

3. 分析

粉末 XRD パターンは、Cu-Ka 線 (45 kV, 200 mA) を装備した X 線回折装置 (SmartLab, (株) リガク)を用いて測定した. スキャン速 度は 10°/min, ステップサイズは 0.02°とした. 合成した LPS 粒子のイオン伝導度は、誘電イ ンターフェース・システム (SI 1296A, Solartron Analytical)と周波数応答アナライザー(SI 1260A, Solartron Analytical) を用いた交流イン ピーダンス測定により求めた. 印加電圧範囲は 10 mV, 周波数範囲は 0.1 Hz-7 MHz とした. 交流インピーダンスセルは、イオン伝導度を測 定する前に 360 MPa で加圧した. イオン伝導 度と抵抗値は、交流インピーダンス測定から得 られた Cole-Cole プロットに基づいて決定し た. 走査型電子顕微鏡 (SEM) 像は, フィラ メント型 SEM (SU3500, 日立ハイテク)を用 いて 10-15 kV で撮影した.以上の測定は、専 用の非大気暴露セルを用いて行った.

研究成果

1. ホットスターラーを用いた LPS 合成

LPS 粒子は、51℃ のホットスターラーを用 い、3 つの異なる反応時間で合成した. 粒子の X 線回折(XRD)パターンを図 1(a) に示す. 30 分間合成した粒子の XRD パターンは、Li₂S に由来するピークを示し、反応が不完全である ことを示している. しかし、60 分合成の XRD パターンでは、Li₂S と LPS の両方に由来する

Fig. 1 (a) XRD patterns of LPS synthesized by hot stirrer at 51°C. SEM images of (b) Li₂S, and LPS synthesized by hot stirrer at 51°C for (c) 30 min, (d) 60 min, and (e) 90 min.

ピークが観察された.最後に,90分合成の XRD パターンでは、LPS に由来するピークの みが観測され、Li₂Sに由来するピークは著しく 弱かった. このことは、原料の Li₂S から LPS への変換には、ホットスターラーを用いた90 分間の合成が必要であることを示唆している. また、LPS 粒子の形成を、反応時間を変えて撮 影した粒子の SEM 画像から観察した(図 1(b)-(e)). 図1(b) に示すように,LPS の原料である Li₂S 粒子は凝集していた.また,30 分間合成 した粒子の SEM 像 (図 1(c)) では, Li₂S 粒子 の表面に板状のLPS 粒子が形成されていた. この観察は、Li₂S表面にLPSが形成されるこ とを報告した先行研究^[6]と一致する. 合成 60 分後に得られた粒子の SEM 像(図1(d))では, 棒状のLPS 粒子がLi₂S 粒子の表面に観察され, Li₂S 粒子から分離していた.これは、板状の

LPS 粒子が Li₂S 粒子上に合成された後, Li₂S 粒子から剥離したことを示唆している. さらに, 合成 90 分後に得られた粒子の SEM 像(図 1(e))では,多数の細長い LPS 粒子が観察され た.これらの観察結果は,未溶解の Li₂S の表 面に板状の LPS が析出した後,棒状の LPS 粒 子が形成され,細長い LPS 粒子に成長したこ とを示している.

異なる温度で合成した LPS の反応時間とイ オン伝導度の関係を図2に示す.反応時間が長 いほどイオン伝導度は高くなり、反応温度が高 いと同じ反応時間でも高いイオン伝導度が得ら れた. 特筆すべきは、1.3 × 10⁻⁴ S/cm という驚 くべきイオン伝導度を持つ LPS で、この方法 では最高のイオン伝導度が 67°C で 60 分間合 成された.このイオン伝導度は、従来の液相振 とう法「つで得られたイオン伝導度に匹敵して いた. 合成に6時間を要した液相振とう法に比 べ、ホットスターラー法はLPSの迅速な合成 に成功した. Li₂S のイオン伝導度は約 10⁻⁸ S/cm であり^[9], LPS のイオン伝導度よりも著しく低 い. そこで、合成時間0分でのイオン伝導度を 0 S/cm で処理した. ここで, イオン伝導度の 変化は反応の進行を反映していると仮定した. さらに, 各温度におけるイオン伝導度と反応時 間との間に直線関係があること、および反応中 の Li_2S と P_2S_5 の濃度変化が無視できることか

Fig. 2 Relationship of reaction time and ion conductivity of LPS synthesized by hot stirrer.

ら、液相における LPS の反応は 0 次反応であ ると仮定した.2つ目は、溶媒中に懸濁した Li₂S 表面で過剰に溶解した P₂S₅ が反応して LPS 粒子が形成されると仮定した^[6].各温度に おけるイオン伝導度と反応時間の近似直線の傾 きを、反応速度定数 k に対応する値として算出 した.kのアレニウス・プロットは強い直線関 係を示しており、その傾きは-3.7×10³であっ たことから、約 31 kJ/mol の活性化エネルギー が推定された.これらの計算には多くの大まか な仮定が含まれているものの、液相で LPS 粒 子を合成するのに必要な活性化エネルギーに関 する貴重な洞察となるだろう.これらの知見は、 LPS 合成のプロセス設計に重要な知見である.

2. 超音波ホモジナイザーを用いた LPS 合成

LPS 粒子は超音波ホモジナイザーを用いて 30-120 分間合成した.得られた粒子の XRD パ ターンを図 3(a) に示す.30 分間合成した粒子 の XRD パターンは,Li₂S と LPS に由来するピー クを示した.しかし,Li₂S のピークは反応時間 が長いほど弱くなった.60-180 分で合成した

Fig. 3 (a) XRD patterns of LPS synthesized by homogenizer. SEM images of LPS synthesized by homogenizer for (b) 30 min and (c) 120 min.

粒子の XRD パターンは、主に LPS に由来する ピークのみを示した. 超音波照射により温度が 上昇したため、反応が速かったと考えられる. 得られた粒子の SEM 像を図 3(b), (c) に示す. 30 分間合成した粒子(図 3(b))は板状と棒状 の両方の形状を有していた。一方、120分後に 合成された粒子(図3(c))は凝集体を形成して いた.この観察結果は、どの反応時間でも板状 および棒状のLPS粒子を生成したホットスター ラーを用いた LPS 合成の結果とは大きく異な る. 120分で合成された凝集体の一次粒子は、 ホットスターラーを用いて合成されたものより も小さかった. さらに、120分合成した粒子は、 60分および90分合成した粒子よりも小さいこ とを確認している、反応時間が長いほど粒子径 が小さくなることが示された。ホモジナイザー での反応時間が長いため、粒子がさらに微細化 したものと推定される.

超音波ホモジナイザーを用いて合成した LPS 粒子のイオン伝導度を測定したところ,30分 間合成した粒子の XRD パターンには Li₂S が存 在するにもかかわらず,イオン伝導度は30– 120分の反応時間で同程度であった.結晶性材 料(Li₂S など)は、ガラスセラミックス(LPS など)よりも強い XRD ピークを示した.この 観察から,30分の合成では Li₂S と LPS の両方 のピークを示したが、どの反応時間でも十分な 量の LPS が合成されたと考えられる.超音波 ホモジナイザーで合成した LPS の最大イオン 伝導度は 0.99 × 10⁻⁴ S/cm であり、液相振とう 法やホットスターラーで合成した LPS 粒子よ りもわずかに低かった.

3. 液相合成による LPS 形成のメカニズム

前2節に示した結果から,原料からLPS 粒子への変換率は反応温度によって決定されることが示唆された.さらに,衝撃の大きさと超音波処理のエネルギーが粒子径と形状に影響することが推察された.衝撃エネルギーが粒子形状に与える影響を調べるため,以下の条件でLPS 粒子を合成した.まず,ホットスターラーを用

Fig. 4 SEM images of LPS synthesized by combinations of (a) hot stirrer and liquid-phase shaking method and (b) hot stirring and an ultrasonic homogenizer.

いてLPS 前駆体を合成した.その後,液相振 とうまたは超音波照射を行った. ホットスター ラー後に液相振とうおよび超音波照射で得られ た LPS 粒子のイオン伝導度はそれぞれ, 1.2 × 10^{-4} S/cm, 1.4×10^{-4} S/cm であり、いずれも高 いイオン伝導度を有していた.また.SEM 像 から、液相振とうで得られた粒子(図4(a))は 板状で、ホットスターラーのみで得られた粒子 (図1(e)) よりも小さかった. これは, ZrO₂ ボー ルがLPS 前駆体を粉砕したためであろう. 一 方で、超音波照射によって凝集した LPS 粒子 が得られたことがわかった(図4(b)). これら の粒子は、ホットスターラーをせずに超音波ホ モジナイザーのみで合成した粒子(図3(c))と 同じ形状を示した.これは、LPS 前駆体が超音 波ホモジナイザーの強い衝撃力によって粉砕さ れ,その後凝集した結果,凝集 LPS 粒子が得 られたことを示唆された.本研究の結果から, LPS 粒子の合成時間は主に反応温度に影響さ れ,温度が高いほどLPS 粒子の形成に強く依 存することがわかった. さらに, 粒子形状は合 成時に付与される物理的エネルギーに影響され たことが示唆される。細長い LPS 粒子は低い 衝撃力で撹拌することで合成され、微細な LPS 粒子は高い衝撃力で超音波処理することで得ら れた. 重要なポイントとして,反応時間と物理 的エネルギーの影響は独立していることであ る.したがって、本研究で提案した LPS 形成 メカニズムに基づくと、LPS の合成時間と粒子 形状は任意に制御することができることが明ら かになった.

4. まとめ

本研究では、ホットスターラーと超音波ホモ ジナイザーを用いて液相中で LPS 粒子を合成 した. 主な目的は、反応温度と衝撃力が反応時 間と粒子形状に及ぼす影響を調べることであっ た、ホットスターラーを利用し、イオン伝導度 が 1.3 × 10⁻⁴ S/cm と高い LPS 粒子を 67°C で 60分かけて合成した.この合成法は、従来の 液相振とう法(6時間)よりも大幅に高速であっ た. また, 大まかな仮定があるものの, LPS 粒 子合成の活性化エネルギーは 31 kJ/mol と見積 もられた.LPS の粒子形状は、反応過程におけ る衝撃エネルギーによって決定されることが明 らかになった. 細長いLPS 粒子は. ホットスター ラーの弱い衝撃力を与えることによって合成さ れた.一方で、微細な LPS 粒子は、超音波ホ モジナイズによって強い物理的エネルギーを加 えることで得られた. さらに, ホットスターラー と液相振とう法を組み合わせることにより、イ オン伝導度が 1.4 × 10⁻⁴ S/cm と高い小さな板 状のLPS 粒子を合成した.本研究は、液相で のLPS 粒子の製造プロセス設計や電極設計に とって重要な知見をもたらすものである.本研 究の成果は、所望の粒子形状と粒子サイズを達 成するために合成条件を最適化するための貴重 な情報を提供し、ひいては ASS-LiBs の性能と 安定性を向上させることができる.

参考文献

 Gao Z., Sun H., Fu L., Ye F., Zhang Y., Luo W., Huang Y., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium

外 部 発 表 成 果

論文発表

1. Tatsuda C., Ohsaki S., Nakamura H., Watano S., Effect of reaction temperature and impact force batteries, Advanced Materials, 30 (2018) 1705702. https://doi.org/10.1002/adma.201705702

- [2] Yano T., Ohsaki S., Nakamura H., Watano S., Numerical study on compression processes of cohesive bimodal particles and their packing structure, Advanced Powder Technology, 32 (2021) 1362–1368. https://doi.org/10.1016/j.apt.2021.02.040
- [3] Mizuno F., Hayashi A., Tadanaga K., Tatsumisago M., High lithium ion conducting glass-ceramics in the system Li₂S–P₂S₅, Solid State Ionics, 177 (2006) 2721– 2725. https://doi.org/10.1016/j.ssi.2006.04.017
- [4] Choi S., Lee S., Park J., Nichols W.T., Shin D., Facile synthesis of Li₂S-P₂S₅ glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST), Applied Surface Science, 444 (2018) 10–14. https://doi.org/10.1016/j.apsusc.2018.02.270
- [5] Phuc N.H.H., Totani M., Morikawa K., Muto H., Matsuda A., Preparation of Li₃PS₄ solid electrolyte using ethyl acetate as synthetic medium, Solid State Ionics, 288 (2016) 240–243. https://doi.org/10.1016/j.ssi.2015.11.032
- [6] Phuc N.H.H., Atsunori M., Liquid phase synthesis of a Li₃PS₄ solid electrolyte precursor, Advances in Chemistry Research, 42 (2017) 261–272.
- [7] Phuc N.H.H., Morikawa K., Mitsuhiro T., Muto H., Matsuda A., Synthesis of plate-like Li₃PS₄ solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries, Ionics, 23 (2017) 2061–2067. https://doi.org/10.1007/s11581-017-2035-8
- [8] Ohsaki S., Yano T., Hatada A., Nakamura H., Watano S., Size control of sulfide-based solid electrolyte particles through liquid-phase synthesis, Powder Technology, 387 (2021) 415–420.

https://doi.org/10.1016/j.powtec.2021.04.050

[9] Hakari T., Hayashi A., Tatsumisago M., Highly utilized lithium sulfide active material by enhancing conductivity in all-solid-state batteries, Chemistry Letters, 44 (2015) 1664–1666. https://doi.org/10.1246/cl.150758

on formation and particle shape of β -Li₃PS₄ in liquid phase synthesis, Advanced Powder Technology, 35 (2024) 104408.

https://doi.org/10.1016/j.apt.2024.104408

研

究

助

成

口頭・ポスター発表

- 辰田千夏,大崎修司,仲村英也,綿野哲, "硫化系固体電解質の液相合成と粒子形成メ カニズム解明",第24回化学工学会学生発 表会(Online, Mar., 2022) H19.
- 2. Ohsaki S., Yano T., Hatada A., Tatsuda C.,

Hayakawa E., Nakamura H., Watano S., "Size control and particle formation mechanism of sulfide-based solid electrolyte particles via liquidphase synthesis", International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI), 2022 (Fujiyoshida, Japan, Nov., 2022) 3-II-D-06.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 65-68 /https://doi.org/10.14356/hptf.21107

HPTF21107

mRNA ワクチン吸入剤プラットフォーム技術の萌芽研究

Platform Technology for the Development of mRNA Vaccine Inhaler

研究代表者 Research leader: 尾関 哲也 Tetsuya OZEKI 名古屋市立大学大学院薬学研究科 教授 Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Professor E-mail: ozekit@phar.nagoya-cu.ac.jp

抄 録

mRNA 封入脂質ナノ粒子(mRNA-LNPs)は mRNA 医薬のための基盤技術であり, mRNA ワクチ ンにも既に応用されている.mRNA-LNPs の吸入剤への応用は効果的な呼吸器感染症ワクチンの開 発において有用な戦略である.そこで,本研究では mRNA-LNPs の粉末吸入製剤化に取り組んだ. スプレフリーズードライ(SFD)法により粉末製剤化し,粉体特性および,培養細胞におる機能評 価を行った.その結果,吸入剤に適した粉体が得られ,ある程度の機能は保持されていた.一方で, 凍結時の氷晶により mRNA の LNPs からの漏出が起こり,機能低下を起こしていることが示唆さ れた.そのため今後は,mRNA-LNPs の構造を保持したまま粉末製剤化する技術の開発が期待され る.

ABSTRACT

mRNA-encapsulated lipid nanoparticles (mRNA-LNPs) are a crucial technology for mRNA medicine and have already been utilized in mRNA vaccines. The application of mRNA-LNPs in inhalation formulations is a promising strategy for developing effective respiratory infection vaccines. Therefore, this study aimed to develop a powder inhalation formulation of mRNA-LNPs. The powder formulation was prepared using the spray-freeze-dry (SFD) method. Its powder properties and function in cultured cells were evaluated, and a powder suitable for inhalation formulation was obtained while maintaining its function to some extent. However, it was suggested that mRNA leaked from LNPs due to ice crystals during freezing, resulting in functional degradation. Therefore, it is expected that technology will be developed to formulate mRNA-LNPs in powder form while maintaining their structure.

研究背景と目的

近年, mRNA を薬として利用する mRNA 医 薬が注目されている.特に, COVID-19 に対す る mRNA ワクチンでは大きな成功を収め,今 後も感染症ワクチン・がんワクチン・疾患治療 における貢献が期待される.

これまでに実用化された mRNA 医薬の投与 経路の多くは、静脈内注射や筋肉内注射などの 注射投与によるものである.呼吸器感染症に対 するワクチンでは、病原菌の侵入部位である呼 吸器粘膜において効率的に液性免疫を誘導する ことが必要である.粘膜免疫の誘導には、注射 投与よりも吸入剤として気管支に直接投与する 方がより効率的であるため、mRNA の吸入剤 の開発が盛んに行われている(Lokugamage et al., 2021).

吸入剤の剤型は,吸入液剤と粉末製剤に大別 される.吸入液剤ではネブライザを用いる方法 や,高圧ガスを用いてエアゾール剤として吸入 する方法がある.これらは吸入用のデバイスが 複雑になる上,液体で製剤を保存するため mRNAの安定性が懸念される.一方で粉末吸 入製剤ではより簡易的なデバイスで吸入するこ とができる.しかし,粉末吸入製剤の調製には, 粉体工学を基礎とした,高度な製剤化技術とそ れを正確に評価することが要求される.そのた め,mRNAの粉末吸入製剤に関する報告は少 ないのが現状である.

我々の研究グループではこれまでにスプレー ドライを基盤とした粉末吸入製剤の開発を行っ てきた. さらに最近では,mRNAのような熱 に不安定な医薬品に対しても適応可能なスプ レーフリーズドライ (SFD)を用いて siRNA 製剤を粉末化することに成功した (Fukushige et al., 2020).

本研究ではこれまでに培ってきた製剤化技術 を応用し,mRNA 医薬の粉末製剤化に取り組 んだ.一般的にmRNA は生体内で非常に不安 定なため,脂質ナノ粒子(Lipid nanoparticles; LNPs)に封入された状態(mRNA-LNPs)とし て利用される. そこで, mRNA-LNPs を SFD により粉末化したときの粉体特性および mRNA-LNPsの in vitro での機能を評価した.

研究方法

1. mRNA-LNPs の調製

レポーター遺伝子(Luciferase, tdTomato)を コードする mRNA は, in vitro 転写の手法によ り, 調製した. mRNA-LNPs は, COVID-19 ワ クチンで用いられる方法と同等の手法で作製し た. 具体的には, LNPs を構成する脂質のエタ ノール溶液と mRNA 水溶液をマイクロ流体装 置で混合することで得た.マイクロ流体装置は, mRNA-LNPs の産業スケール製造でも用いられ る装置であり,本助成によりこれらを導入する ことで,効率的かつ再現性よく mRNA-LNPs を 作製する環境を構築した.

2. mRNA-LNPs 粉末製剤の調製

mRNA-LNPs 粉 末 製 剤 は, mRNA-LNPs を
SFD することにより調製した. 具体的には,
5% マンニトール溶液と mRNA-LNPs を混合して,噴霧溶液とした. これを液体窒素中にミニスプレーヤーを用いて噴霧し,凍結乾燥した(図
1).

3. 粉体物性の評価

得られた mRNA-LNPs 粉末製剤の粒子形状

Fig. 1 Schematic illustration of the preparation of powdered mRNA-LNPs.

は、走査型電子顕微鏡(SEM)を用いて観察 した.また吸入特性はアンダーセン・カスケー ド・インパクター (ACI)を用いて評価した.

4. 復水後の mRNA-LNPs の評価

LNPsの構造は,mRNA-LNPs粉末製剤を水 に懸濁後,透過型電子顕微鏡(TEM)を用い て評価した.また,水に懸濁した後のmRNA-LNPsの粒子径を動的光散乱法(DLS)により 測定した.さらにmRNAのLNPsへの封入性 を電気泳動法で評価した.

5. 培養細胞における mRNA-LNPs 粉末製剤 の機能評価

培養細胞における評価にはヒト肺上皮由来

Fig. 2 Characteristics of powdered mRNA-LNPs. (A) SEM images. (B) Aerosol performance evaluated by Andersen cascade impactor (ACI).

A549 細胞と、マウス・マクロファージ由来 RAW264 細胞を用いた.作製した粉末製剤を培 地で懸濁し、各細胞に添加した.その24 時間 後に、ルシフェラーゼ発現活性測定、および共 焦点レーザー顕微鏡による観察を行った.

研究成果

1. mRNA-LNPs 粉末製剤の粉体特性評価

SFD により調製した, mRNA-LNPs 粉末製剤 の構造を SEM により観察したところ, 粒子径 約 50 µm で球形の粒子が得られた(図 2A). ま た ACI で吸入特性を評価したところ, Fine particle fraction は 35% 程度であり, 吸入剤に適 した粉体特性を示した(図 2B). これらの結果 は, 我々が過去に SFD により調製した粉末製 剤と一致しており, mRNA-LNPs の調製に SFD が適応可能であることが示唆された.

2. 復水後の mRNA-LNPs 粉末製剤の評価

粉末製剤を水に懸濁し,DLS により mRNA-LNPs の粒子径を測定したところ,わずかに粒 子径の増大がみられたものの,そのサイズは 100 nm 程度であった(図3A).粉末製剤を水

Fig. 3 Characteristics of powdered mRNA-LNPs after rehydration. (A) Size of mRNA-LNPs before (red line) and after (green line) powderization, measured using DLS. TEM images of AuNP-encapsulated LNPs before (B) and after (C) powderization. (D) Electrophoresis of mRNA-LNPs and powdered mRNA-LNPs. Triton X-100 was added to solubilize the LNPs.

Fig. 4 In vitro protein expression by powdered mRNA-LNPs. (A) Luciferase expression in A549 and RAW264 cells treated with different mRNA concentrations. (B) Confocal microscopy image of the fluorescent tdTomato.

に懸濁し、TEM により粒子構造を観察した. この際、LNPsとmRNAの位置関係を観察する ため、mRNAと同等の性質をもつ金ナノコロ イドをLNPs内に封入した粒子を用いた.粉末 製剤化前では金ナノコロイドのほとんどは LNPs内に封入されていたのに対して、粉末製 剤化後では、一部の金ナノコロイドがLNPs外 部に漏出する様子が観察された(図3B,C). これは、電気泳動の結果(図3D)においても 同様で、粉末製剤化後ではmRNAの封入率の 低下がみられた.

3. mRNA-LNPs 粉末製剤による培養細胞へのタンパク質発現活性評価

調製した mRNA-LNPs 粉末製剤を培地に懸濁 し、A549 および RAW264 細胞に添加し、タン パク質発現活性を評価した. どちらの細胞にお いても、mRNA 単体よりは高い発現がみられ たものの、粉末製剤化前の mRNA-LNPs と比較 すると、10~100 分の1 にタンパク質発現活性 が減弱していた(図4A).また、顕微鏡による

外部発表成果

口頭発表

1. 小川 昂輝, Hemat Mostafa, Pae Heeju, 田上

観察からも同様の結果が得られた(図4B). mRNA-LNPの作用の減弱は凍結時に生じる氷 晶がLNPsを崩壊させることにより,mRNAの 封入率の低下することに起因すると考えられ る.そのため、今後は、mRNAの封入性を維 持したまま粉末製剤化するための製剤化法や添 加剤の最適化を行う予定である.

参考文献

- Fukushige K., Tagami T., Naito M., Goto E., Hirai S., Hatayama N., Yokota H., Yasui T., Baba Y., Ozeki T., Developing spray-freeze-dried particles containing a hyaluronic acid-coated liposome–protamine–DNA complex for pulmonary inhalation, International Journal of Pharmaceutics, 583 (2020) 119338. https://doi.org/10.1016/j.ijpharm.2020.119338
- Lokugamage M.P., Vanover D., Beyersdorf J., Hatit M.Z.C., Rotolo L., Echeverri E.S., Peck H.E., Ni H., Yoon J.-K., Kim Y., Santangelo P.J., Dahlman J.E., Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs, Nature Biomedical Engineering, 5 (2021) 1059–1068.

https://doi.org/10.1038/s41551-021-00786-x

辰秋,尾関 哲也, "粘膜ワクチンを目指し た粉末製剤化 mRNA 封入脂質ナノ粒子の開 発",省エネルギーに貢献する粒子設計・粉 体プロセスの薬工連携研究会 2022 年度若手 研究者討論会.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 69-75 /https://doi.org/10.14356/hptf.21108

HPTF21108

半導体ナノ表面のマイクロ波プラズマ改質と高機能化

Semiconductor Particle with Nano Surface Functionalized by Microwave Plasma Assisted Reaction

研究代表者 Research leader: 加藤

邦彦 Kunihiko KATO

名古屋工業大学 先進セラミックス研究センター 特任助教 Advanced Ceramics Research Center, Nagoya Institute of Technology, Designated Assistant Professor E-mail: kato.kunihiko@nitech.ac.jp

抄 録

半導体光触媒の反応効率を向上させるためには、化学組成制御・異種物質複合化による近赤外光域 までの応答性拡張及び光励起キャリアの再結合抑制が極めて有効である。本研究では、2.45 GHz マイクロ波プラズマが誘起する反応場を利用した新規手法により、市販の酸化タングステン(WO₃) ナノ粒子/ポリスチレン(PS)粒子を原料としてWO_{2.72}/カーボン複合粒子のin-situ合成に成功した。 得られた複合粒子は 300-800 nm の範囲でブロードな光吸収能を示すとともに、処理前と比較して 優れた電気的特性を示すことが明らかとなった(電荷移動抵抗:1/4 低下、電子寿命:約7倍増、 電子移動数:2倍増、有効反応面積:約2倍増)。さらに、近赤外照射下におけるローダミンBの 光触媒分解反応において、マイクロ波処理により活性を飛躍的に向上させることに成功し、PS 非 混合の合成粒子と比較しても40倍程度の活性向上が確認された(反応速度:最大 6.6 × 10⁻³ min⁻¹. 原料は不活性、反応速度:<1.0 × 10⁻⁵ min⁻¹).また、いずれの励起キャリア(e⁻, h⁺)も酸化還元 反応を介して強い酸化力を有する \cdot O₂^{-/}·OH を生成させ光触媒分解に顕著に寄与していることが確 認された.さらに、近赤外光照射下における電子移動速度は約9倍増加するとともに、光電流値が 2 桁以上増加したことが明らかとなった。

ABSTRACT

Spatial charge separation and extending light absorption capacity upto near-infrared regions are critical strategies for achieving highly efficient photocatalysis on the surface of semiconductive material. In this study, we realized the simultaneous reduction of WO₃ nanoparticle surfaces and heterojunction formation by combining carbon via an in-situ 2.45 GHz microwave plasma-assisted reaction, from a mixture of tungsten oxide particles and polystyrene as a carbon source. The WO_{2.72}/carbon composite particles exhibited broad light absorption capacity in the range of 300–800 nm and higher electrical properties compared with the raw WO₃ (about 75% lower charge transfer resistance, seven times longer electron lifetime, two times larger electron transfer number and effective reaction area). Moreover, in the photocatalytic degradation of rhodamine B under

Copyright © 2024 The Author. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

near-infrared irradiation (>750 nm), the composite particles performed an excellent reaction rate up to 6.6 \times 10⁻³ min⁻¹, which was 40 times higher than the activity of plasma-treated WO₃ without PS. Furthermore, it was proved that forming WO_{2.72} and heterojunction with carbon enhanced the photocurrent value by more than two orders of magnitude and resulted in a nine times faster electron transfer rate upon photoirradiation.

研究背景と目的

光触媒の反応速度を向上させるためには、光 励起キャリア再結合抑制および可視・近赤外光 への応答域拡張のための材料設計が極めて重要 である.特に半導体光触媒では,結晶中の原子 配列制御, 化学量論比の調整, 元素ドーピング, 貴金属やナノカーボンなどの助触媒担持、他の 半導体材料とのヘテロ接合等のアプローチがこ れまで展開されてきた(Kim et al., 2012). グラ フェンや CNT. フラーレンなどをはじめとし たナノカーボン助触媒との複合化は再結合抑制 に有効な手法であるが、複合材料中の半導体粒 子-ナノカーボン間でヘテロ接合をいかに効率 よく構築するかが重要となる.また,近赤外域 での光応答性を向上させる手法として, アップ コンバージョン-ナノ材料との複合化, 粒子形 態・欠陥構造制御やヘテロ構造形成によるバン ドギャップ・エンジニアリング等がこれまでに 報告されている (Tian et al., 2019; Wang et al., 2021).酸化タングステンは準安定相(マグネ リ相)を含む多くの多形を有することが知られ ており (Lee et al., 2019), 酸素欠陥の形成に伴 いW5d 軌道に由来する局在化準位が伝導帯下 端に形成するため近赤外吸収を示すようになる (Lu et al., 2022). 筆者はこれまでに、マイクロ 波が誘起する反応場を利用した新規プロセス, 例えばマイクロ波プラズマによる金属酸化物ナ ノ粒子の sub-5 nm 表面改質(Kato et al., 2020) や,マイクロ波選択加熱性を活用した有機化合 物の高速開裂によるナノカーボンコーティング (Kato et al., 2022) について報告してきた.本 研究では、マイクロ波プラズマ反応場を利用し た酸化タングステン(WO3)ナノ粒子改質/カー

ボン複合化の同時実現を可能とする新たな合成 手法により,高活性な近赤外応答型光触媒材料 の開発を試みるとともに,高活性発現機構を明 らかにすることを目的とする.

研究方法

1. マイクロ波プラズマによる WO_x/ カーボ ン複合粒子合成

市販のWO₃粉体に対しポリスチレン粉体を 45 vol% 混合したのち反応容器に移し,2.45 GHz マイクロ波シングルモード共振器(TE₁₀₄)電 界最大位置を通る石英管中に挿入した.石英管 内をHe 雰囲気(1Pa)に調整しマイクロ波印 加によりプラズマを発生させた.マイクロ波プ ラズマ照射により酸化物粒子表面に形成する欠 陥に起因し自己発熱が生じることで試料表面温 度は急速に上昇する(Kato et al., 2020).500 °C で5分保持した後,マイクロ波出力を制御し 1000 °C まで昇温させた.その直後にプラズマ 照射を停止し,速やかに空冷させることにより 複合粒子(以下, PS-MW1000 と表記)を得た. また,比較サンプルとして PS 非混合系につい ても同様に作製した(W-MW1000).

2. 化学構造および光学・電気的特性評価

合成粒子の結晶相・化学構造の同定を粉末 X 線回折 (PXRD) 装置 (Ultima IV, Rigaku corp.), Raman 分光装置 (inVia InSpect, Renishaw plc.) により行った.また, TG-DTA 装置 (DTG-60, Shimadzu)を用いた熱分析を行った.紫外可視 光分光光度計 (V-7100, JASCO)を用いて UV-Vis スペクトルを取得した.電気化学測定は, 三電極セル (作動電極: グラッシーカーボン, 研

究

助

成

対極:白金,参照電極:Ag/AgCl) およびFRA 搭載ポテンショ/ガルバノスタット(SP-200, Bio-Logic Science Instruments Ltd.)を用いて実 施した.電解質は, Mott-Schottky plotでは 0.5 M Na₂SO₄ 溶液を, CV および EIS 測定では 0.1 M KCl 溶液 with 1 mM K₃[Fe(CN)₆]を使用した.

3. 光触媒活性評価

光触媒活性評価として,近赤外照射下におけるローダミンB(RhB)の光分解試験を行った. 300 W Xe ランプ(MAX-350,朝日分光)を光源としNIR ミラーモジュール(750–1050 nm)を取り付け使用した.なお吸脱着平衡とするため,触媒粉体を10 ppm RhB水溶液と混合し暗室下で30分間撹拌させた後に,光照射を開始した.さらに,活性種調査を目的とし,犠牲剤として AgNO₃ [e⁻], t-BtOH [·OH],ベンゾキノン[·O₂⁻], EDTA-2Na [h⁺]を添加し同様の試験を行った.([]内は捕捉される活性種)

研究成果

1. 合成粒子の結晶・化学構造評価

図1aにマイクロ波反応前後におけるPXRD パターンを示す.マイクロ波反応後には主相が monoclinic WO₃からマグネリ相である WO_{2.72} (副相:WO_{2.9}) へと変化した. 一方で,WO₃ のみで処理した場合、非晶質化が生じるのみで 結晶相変化はみられない.図1bにラマンスペ クトルを示す. WO₃に由来するメインピーク が強く還元されることによりブロード化すると ともに、酸素欠陥/5配位(WO₅)に由来起因 する振動ピーク(960 cm⁻¹/890 cm⁻¹)が確認さ れた. また, 六員環ネットワーク構造およびそ の欠陥構造に起因するGバンド(1590 cm⁻¹) およびDバンド (1350 cm⁻¹) が観測された. 熱的平衡状態下において,1000℃で WO₃→WO₂₇₂への反応が進行するには酸素分 圧が10⁻⁸以下まで低下する必要がある(Lee et al., 2019). WO_xの選択的発熱による表面近傍 の生成カーボンとの反応によりわずか数分の熱 的非平衡反応条件下でも還元が促進されたもの と考えられる. 図2にTG-DTA曲線を示す. WO₃-PS原料では300℃,450℃付近で二段階 にわたり重量減少および発熱ピークが観測され るが、マイクロ波反応後(PS-MW1000)には

Fig. 1 (a) PXRD patters (upside) and reference (downside), and (b) Raman spectra.

Fig. 2 TG-DTA of WO₃-PS raw mixture (left) and the synthesized particles [solid line: PS-MW1000, dot line: W-MW1000] (right).

研

究

助

成

大きく低下したことから,残存する低分子炭化 水素は僅かであり,その多くはカーボンへと転 換したと考えられる.一方,400 °C 以上で質 量増加が確認されるが生成した WO_x が再度酸 化することによる応答であると推察される.

2. 光学特性評価およびバンド構造推定

図 3a に UV-Vis スペクトルを示す. W-MW1000では、酸素欠陥生成に起因して吸 収端のレッドシフト及び可視光-近赤外光吸収 能の向上がみられた. さらに, PS-MW1000 は 紫外から近赤外光の広い範囲(300-800 nm)で 高い吸収特性を示した. カーボンとの複合化と ともに、WO_x中のW⁵⁺/W⁴⁺生成に起因する defect band の形成および局在表面プラズモン共 鳴(LSPR)による赤外光応答性の発現が要因 であると考えられる. また, Tauc-plot により 光学バンドギャップを算出した.一般に、WO3 は間接遷移型 (n = 2) であるのに対し、マグ ネリ相である WO_x (WO_{2.72}, WO_{2.9}) は直接遷移 型 (n = 1/2) であることが知られている. バン ドギャップはWO3 rawでは2.55 eV, PS-MW1000では2.16 eV/1.31 eV と算出された(図 **3b**). さらに, Mott-schottky plot より, フラッ トバンド電位 V_{FB} はそれぞれ 0.18, -0.08 V (vs. NHE) と見積もられた (図 3c). 一般に, WO₃, WO_{2.72}のフェルミエネルギー E_Fは伝導 帯下端 (CBM) から約+0.5 V, -0.5 V (vs. Evac)の位置に存在することが報告されている

(Li et al., 2016; Dong et al., 2022). 以上の結果から推定されるバンド構造を図 3d に示す. 上述のように、PS-MW1000 では二種類のバンドギャップが存在するが、それぞれ VBM-CBM間(2.16 eV) / CBM-Defect band 間(1.31 eV)のギャップに相当すると推察される.

3. 電気的特性評価

図 4a に WO₃ および合成粒子の Nyquist-plot を示す. 等価回路は $R_s + (R_{ct} + Z_w)/C_{ct}$ として フィッティングした. ここで, R_s :溶液抵抗(Ω), C_{ct} :電気二重層容量(F), R_{ct} :電荷移動抵抗(Ω), Z_w : ワールブルグ・インピーダンスである. WO₃ および PS-MW1000の R_{ct} はそれぞれ 2429, 616 Ω であり,約1/4程度低下した. また, Bode プロット(位相ずれの周波数依存性)から, 最大周波数 f_{max} はそれぞれ 570.0 Hz, 87.5 Hz であることがわかった(図 4b). さらに,電子 寿命 τ_c を式(1)より算出した.

$$\tau_{\rm e} = 1/(2\pi f_{\rm max}) \tag{1}$$

 τ_{e} はマイクロ波反応後に 279 から 1819 μ s に 8 倍以上増加した. CV 曲線を図 4c に示す. 電 圧を負/正に掃引することによりそれぞれ還元 反応(右方向:式(2))/酸化反応(左方向) が促進され,還元体/酸化体の濃度勾配に応じ てカソード電流 $I_{c}/$ アノード電流 I_{a} が発生する.

 $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-} + e^{-} \rightleftharpoons \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-}$

(a) (b) (c) Potential / V (vs. NHE) (d) (d)
$$PS-MW1000$$
 $PS-MW1000$ $PS-MW100$

Fig. 3 (a) UV-vis spectra, (b) Tauc-plot, (c) Mott-Schottky plot, and (d) Estimated band structure.

研究助成

(2)

Fig. 4 (a) Nyquist plot (inset: Randles equivalent circuit image), (b) Bode plot, (c) Cyclic voltammetry, and (d) Plots of peak currents vs. square root of scan rates.

 I_{a} , I_{c} のピークポテンシャル差 ($\Delta E_{p} = E_{pc} - E_{pa}$) はそれぞれ 181.6 mV, 73.7 mV であった. 理論的には $\Delta E_{p} = 56.5/n$ (mV) で表すことができ,電子移動度が十分に速く,酸化還元反応が可逆的に生じる場合はn = 1 に近づく (n は分子 1 モル当たりの電子移動数).マイクロ波処理前後で電子移動数は 0.31 から 0.77 へと大きく増加した.図4d にピーク電流 – スキャン速度の関係を示す.図の傾きから Randles–Sevcik式(式(3))より有効電極面積A (cm²)を求めることができる.

$$I_{\rm pa} = (2.69 \times 10^5) n^{3/2} v^{1/2} A D^{1/2} C \tag{3}$$

ここで, D:活物質の拡散係数 (cm²/s), C: 反応種の濃度 (mol/cm³), v:スキャン速度 (V/s) である. A は反応前後で 0.051 cm² から 0.094 cm²へと約2倍程度増加したことがわかっ た.

4. 近赤外光触媒活性評価

図 5a に近赤外照射下における RhB の光触媒 分解挙動を示す.3時間の光照射により約80% 分解した.また,図5bには各サンプルにおけ る分解比率の時間変化を示す.WO3単体では 暗室下での RhB 分子吸着による低下が見られ るのみで,照射を継続しても吸光度の低下は観 測されなかった.一方でマイクロ波処理を行う ことで活性が発現し,PS-MW1000 が最も高い 活性を示した.また,反応速度は最大で 6.6× 10⁻³ min⁻¹ であり,数桁の活性向上が見られた (図 5c). さらに, 犠牲剤を用いて活性種の特 定を試みた. e⁻, h⁺ および ·OH のトラップ剤 として AgNO₃, EDTA-2Na, t-BuOH を添加し たところ、いずれも反応速度が著しく低下した $(\mathcal{Z} h \mathcal{Z} h 5.4 \times 10^{-4}, 8.6 \times 10^{-4}, < 1.0 \times 10^{-4})$ 10^{-5} min⁻¹). Nitroblue tetrazolium (NBT) は ·O₂-と選択的に反応することで知られるが, 120 min の光触媒反応によりピーク強度が大き く減少した(図5d). また, テレフタル酸(TAOH) は ·OH と反応して蛍光性の高い化合物に変化 することが知られている (Nakabayashi et al., 2015). TAOH 添加 NaOH 溶液を用いた系では, 240 min の光触媒反応後に 425 nm で強い発光 が見られた (図 5e). 以上のことから, e⁻/h⁺ い ずれも酸化還元反応を介して強い酸化力を有す る ·O₂⁻/·OH を生成させ光触媒分解に寄与して いることが明らかになった. さらに, 近赤外光 照射に発生する電流値を測定したところ(図 5f)、2桁以上向上するとともに電子移動速度 は約9倍増加したことが確認された.

5. 結言

本研究では、市販の WO₃ および PS の混合 粒子を原料とし、2.45 GHz マイクロ波プラズ マが誘起する反応を利用した WO_{2.72}/ カーボン 複合粒子の in-situ 合成に成功した.得られた 複合粒子は 300-800 nm の範囲でブロードな光 吸収能を示すとともに、処理前と比較して優れ

Fig. 5 (a) UV-vis absorption spectra of RhB solution in photocatalysis under near-infrared light irradiation (750–1050 nm), (b) C/C_0 plot, (c) $-\ln(C/C_0)$ plot, (d) absorption spectra of NBT, (e) PL spectra of TAOH, and (f) Photocurrent-time curves.

た電気的特性を示すことが明らかとなった. さらに,近赤外照射下におけるローダミンBの 光触媒分解反応において,マイクロ波処理によりWO₃(原料は不活性)の活性を飛躍的に向 上させることに成功し,PS非混合の合成粒子 と比較しても40倍程度の活性向上が確認された(反応速度:最大6.6×10⁻³min⁻¹).優れた 近赤外光触媒活性が発現した主な要因として は,WO_x中の欠陥準位形成および局在表面プ ラズモン共鳴による赤外線応答性の向上,WO_x 形成およびカーボン複合化による電気伝導性の 著しい向上と,それに伴う電子寿命の増加・光 励起キャリア再結合抑制が考えられる.

参考文献

Dong G., Huang X., Bi Y., Anchoring black phosphorus quantum dots on Fe-doped W₁₈O₄₉ nanowires for efficient photocatalytic nitrogen fixation, Angewandte Chemie International Edition, 61 (2022) e202204271. https://doi.org/10.1002/anie.202204271

Kato K., Xin Y., Shirai T., TiO_2 with super narrow bandgap achieved in one-step single-mode magnetic microwave induced plasma treatment, Scripta Materialia, 177 (2020) 157–161.

https://doi.org/10.1016/j.scriptamat.2019.10.021

- Kato K., Xin Y., Vaucher S., Shirai T., Single nanosized graphene/TiO_x multi-shells on TiO₂ core via rapidconcomitant reaction pathway on metal oxide/polymer interface, Scripta Materialia, 208 (2022) 114358. https://doi.org/10.1016/j.scriptamat.2021.114358
- Kim H.-i., Moon G.-h., Monllor-Satoca D., Park Y., Choi W., Solar photoconversion using graphene/TiO₂ composites: nanographene shell on TiO₂ core versus TiO₂ nanoparticles on graphene sheet, The Journal of Physical Chemistry C, 116 (2012) 1535–1543. https://doi.org/10.1021/jp209035e
- Li H., Yu H., Quan X., Chen S., Zhang Y., Uncovering the key role of the fermi level of the electron mediator in a z-scheme photocatalyst by detecting the charge transfer process of WO₃-metal-gC₃N₄ (metal = Cu, Ag, Au), ACS Applied Materials & Interfaces, 8 (2016) 2111–

2119. https://doi.org/10.1021/acsami.5b10613

Lee Y.-J., Lee T., Soon A., Phase stability diagrams of group 6 Magnéli oxides and their implications for photonassisted applications, Chemistry of Materials, 31 (2019) 4282–4290.

https://doi.org/10.1021/acs.chemmater.9b01430

Lu Y., Jia X., Ma Z., Li Y., Yue S., Liu X., Zhang J., $W^{5+}-W^{5+}$ pair induced LSPR of $W_{18}O_{49}$ to sensitize $ZnIn_2S_4$ for full-spectrum solar-light-driven photocatalytic hydrogen evolution, Advanced Functional Materials, 32 (2022) 2203638.

https://doi.org/10.1002/adfm.202203638

Nakabayashi Y., Nosaka Y., The pH dependence of OH radical

formation in photo-electrochemical water oxidation with rutile TiO_2 single crystals, Physical Chemistry Chemical Physics, 17 (2015) 30570–30576. https://doi.org/10.1039/C5CP04531B

Tian Q., Yao W., Wu W., Jiang C., NIR light-activated upconversion semiconductor photocatalysts, Nanoscale Horizons, 4 (2019) 10–25. https://doi.org/10.1039/c8nh00154e

Wang L., Xu X., Cheng Q., Dou S.X., Du Y., Nearinfrared-driven photocatalysts: design, construction, and applications, Small, 17 (2021) 1904107. https://doi.org/10.1002/smll.201904107

<u>外 部 発 表 成 果</u>

口頭・ポスター発表

 加藤 邦彦,松井 亮介,辛 韵子,白井 孝,"マ イクロ波プラズマアシスト反応によるホモ - ヘテロ接合形成と可視光応答型光触媒へ の応用",日本セラミックス協会 2023 年年 会(Yokohama, Mar. 8–10, 2023) 3C10.

 加藤 邦彦,辛 韵子,白井孝,"マイクロ波 プラズマによる可視光応答型ヘテロ接合光 触媒の創製",粉体工学会 2023 年度春季研 究発表(Shinjuku, May 15–16, 2023) S-2.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 76-81 /https://doi.org/10.14356/hptf.21109

HPTF21109

均質な多成分粒子ペーストの調製に関する基礎研究

Fundamental Research on the Preparation of Homogeneous Multi Component Particle Paste

研究代表者 Research leader: 北村 研太

研太 Kenta KITAMURA

法政大学生命科学部 助手 Department of Chemical Science and Technology, Hosei University, Research Associate E-mail: kenta.kitamura.13a@gmail.com

抄 録

スラリーを利用した製造プロセスでは粒子の分散制御が製品特性の最適化において重要である.し かしこの分散制御には様々なパラメーターがあることから調製は容易でない.本研究では分散制御 の指針を示すため,分散技術の一つである"固練り(高粒子濃度で練った後,希釈することでスラ リーを調製する方法)"に着目し,固練り条件が粒子の分散状態,とりわけその均質性に及ぼす影 響を明らかにすることを目的とし研究をおこなった.実験では大小二種類の粒子を用い,固練り時 の粒子濃度をパラメーターとしてスラリーを調製,流動特性や粒子径分布測定によりスラリーを評 価した.その結果,固練り時粒子濃度の増加に伴い粒子の分散が促進し,分布がシャープになる一 方で,閾値を超えるとその効果が低くなることが分かった.この結果から固練り時の粒子濃度を適 切に調整することで均質な分散状態を作り出すことができる可能性が示唆された.

ABSTRACT

In manufacturing processes using slurries, particle dispersion control is important for optimizing product properties. However, the preparation of slurries is not easy due to the various parameters involved in dispersion control. In this study, we tried to clarify the effect of kneading process (In this study, kneading process is defined as a method of preparing a slurry by kneading at a high particle concentration and then diluting.) conditions on the dispersion state of particles, especially on their homogeneity, to provide a guideline for dispersion control. Slurries consisting of two types of particles, large and small, were prepared. The key parameter in slurry preparation was the particle concentration during the kneading process. We evaluated the slurries by measuring both flow characteristics and particle size distribution. As a result, particle dispersion was promoted, and the distribution became sharper as the particle concentration increased during kneading process. However, the effectiveness diminished when the concentration exceeded a certain threshold. These results suggest that a homogeneous dispersion can be created by adjusting the particle concentration during kneading process.

研究背景と目的

粒子と溶媒を混合しスラリー化することで製 品をつくるプロセスは様々な産業で利用されて いる.このプロセスでは粒子の分散状態を制御 することが製品特性の最適化において重要とな る. 例えばリチウムイオン電池の負極の製造で は粒子を良く分散させることでサイクル特性が 良く^[1].低抵抗^[2]の電極を製造することがで きる. このように、原料粒子を加工する際にス ラリー状態を介する製品の製造ではスラリー中 の粒子の分散状態の制御が非常に重要となる. また一方で、複数種類の粒子を含むスラリーに おいては、粒子を均質に分散させることで製品 特性を安定化させることができると考えられ る. このため高度な分散制御が求められる. ス ラリー中の粒子分散状態の制御には溶媒の選択 [3] 添加剤の選択^[4] やその添加量の調整^[2] 材料の混合順序^{[2],[5]},スラリー調製の時間^{[6],[7]} ミキサーの選択^[8]など、様々な方法がある. その中の一つに高い粒子濃度で練った後、希釈 することでスラリーとする "固練り" によるス ラリー調製法がある.固練りは高い粒子濃度で 練ることにより高いせん断を掛けることができ るため、粒子の分散を促進する方法と考えられ ている^[8].この固練り条件について、塗料業界 ではフローポイント法と呼ばれる方法により最 適な分散処理時の組成が設定されている^[9] 一 方ですべての産業において固練り条件がフロー ポイントにより決定されているわけではない. このため固練りを利用する産業や製品ごとに固 練り条件を決定する手法の確立が必要であると 考えられる.

そこで本研究では、リチウムイオン電池電極 の製造で用いられる水系のカーボンスラリーを 対象に固練り時の粒子濃度が粒子の分散状態、 とりわけその均質性に与える影響を解明するこ とを目的として研究をおこなった。

研究方法

1. 実験試料

本研究ではリチウムイオン電池の負極の水系 製造で利用される水系カーボンスラリー^[10]を 題材に検証をおこなった. 試料粉体にはアセチ レンブラック(以下 AcB, DENKA Black Li-100, デンカ, 一次粒子径 35 nm, 密度 1.70 g cm⁻³, 比表面積 68 m²g⁻¹), およびグラファイト(以 下Graphite, SG-BH8, 伊藤黒鉛工業, 平均粒 子径 8.58 µm, 密度 2.23 g cm⁻³, 比表面積 12.12 m² g⁻¹) を体積比でAcB: Graphite = 1:11.5の分量で手動によるドライ混合した粉 体を用いた.図1に走査電子顕微鏡(SU-8020, 日立ハイテク) で撮影した各粉体の SEM 画像 を示す.図1a)より,空気中においてアセチレ ンブラックは凝集体をつくっているのに対し、 図1b)のグラファイト粒子はアセチレンブラッ クと比較してバラバラになっていることが分か る. 溶媒にはイオン交換水を用いた. バインダー にはリチウムイオン電池の負極の水系製造で分 散剤,および増粘剤として用いられるカルボキ シメチル・セルロース・ナトリウム (以下 CMC, 東京化成工業株式会社, 平均分子量 120,000 g mol⁻¹, エーテル化度 0.65)を用いた.

2. スラリー調製

スラリーの最終粒子濃度は10.0 vol% (グラ ファイト 9.2 vol%, アセチレンブラック

Fig. 1 SEM image of particle: a) Acetylene black, b) Graphite.

研

究

助

成

0.8 vol%)とし, CMC 添加量は 0.0, 0.1, 0.2, 0.4, 0.8 mg m⁻² particle(粒子単位表面積当たり)と した.本研究では合計二回の分散処理をおこ なった.そして最初の分散処理を「固練り」と 呼び、この固練り段階での粒子濃度を10.0、 20.0, 30.0, 40.0, 50.0 vol% と変化させ, スラリー を調製した.具体的な調製手順はまず固練り時 の粒子濃度となる量の溶媒に CMC の全量を溶 解させ, CMC 溶液を調製した. その後試料粉 体を投入, 自転公転ミキサー (ARE-300, シン キー) で自転 800 rpm, 公転 2000 rpm の条件の 下5分間分散処理した.その後分散媒で最終粒 子濃度となるよう希釈し,再度同じ条件で分散 処理することで試験用スラリーとした。この試 験用スラリーの組成は CMC の添加量を除き全 て同じである.

3. スラリー評価

スラリーの流動特性評価はレオメータ (MCR-302, アントンパール・ジャパン)を用い, スラリーおよびスラリーを遠心分離することで 得た上澄みのせん断速度 1000 s⁻¹ での見かけ粘 度の測定をおこなった.また,粒子の分散状態 を評価するため以下の式(1)で相対粘度の算 出をおこなった.ここで η_{rel} は相対粘度(-), η_{slu} はスラリーの粘度(Pa s), η_{sup} はスラリー を遠心分離して得られた溶媒の見かけ粘度(Pa s) である.

$$\eta_{\rm rel} = \frac{\eta_{\rm slu}}{\eta_{\rm sup}} \tag{1}$$

また調製したスラリー中粒子の粒子径分布を 調べるため、レーザー回析式粒子径分布測定装 置(SALD-2300,島津製作所)を用いてスラリー 中粒子の粒子径分布測定をおこなった.なお本 装置を用いた粒子径分布の測定では測定可能な 粒子濃度までスラリーを希釈する必要があっ た.そこでイオン交換水を用いて、測定可能領 域に収まるまで希釈(測定時の粒子濃度は約 0.0004 vol%)した後、測定をおこなった.

研究成果

本章においてはスラリー評価の結果を全て1 節にて説明した後,これらのスラリー評価の結 果から総合的に考えられる分散状態変化の理由 を2節にて説明する.

1. 固練りがスラリー特性に与える影響

図2に各スラリーの固練り時粒子濃度と、最 終粒子濃度(10 vol%)におけるスラリーの見 かけ粘度の関係を示す.図2より、ほぼすべて のスラリーにおいて固練り時の粒子濃度を高く すると固練りなしのスラリー(横軸 10 vol%の 値)と比較して見かけ粘度が低くなり、その後 一定になっていることが分かる.

このことから固練りにはスラリーの粘度を低 減させる効果があることが示唆される.一方こ の減粘の理由が粒子の分散によるものであるか は次の相対粘度の結果から判断ができる.

図3に各粉体を用いたスラリーにおける固練 り時粒子濃度と、最終粒子濃度(10 vol%)に おけるスラリーの相対粘度(-)の関係を示す. 図3より、固練り時の粒子濃度の増加に伴い、 一度相対粘度が低下した後、極小値を持って再 度相対粘度が増加する傾向を示したことが分か る.これは即ち、固練り時の粒子濃度の増加に 対して粒子が良く分散する効果がある濃度と、

Fig. 2 Slurry evaluations by apparent viscosity in each additive amount of CMC.

ある閾値以上の粒子濃度ではその効果が得られ ない領域が存在することを示している.

図4にレーザー回折で測定した粒子径分布を 示す.図4a)からe)は各CMC添加量の混合粉 体スラリーの粒子径分布,および図4f)は固練 りなし,CMC添加量0.0 mg m⁻² particle(粒子 単位表面積当たり)のAcBスラリー,および グラファイトスラリーの粒子径分布である.図 4a)からe)のグラフから分かる通り,固練り時 の濃度が固練りなしの2倍,3倍と増加するに

Fig. 3 Slurry evaluations by relative viscosity in each additive amount of CMC.

つれて、固練りなしにおいて積算値が約50% 以上に位置していた大きい粒子が小さくなって いることが分かる.さらに固練り時の粒子濃度 の倍数が3倍を境に、固練り時の粒子濃度が4 倍、5倍と大きくなると再度積算値が約50% 以上に位置していた大きい粒子が大きくなって いることが分かる.一方で積算値が約50%以 下に位置していた小さい粒子の分布はあまり変 化していないことが分かる.図4f)より、固練 りをおこなわず、CMCを添加していない状態 では、AcBの方がグラファイトよりも粒子径 が大きくなっていることが分かる.一次粒子の 大きさはグラファイトの方がAcBよりも大き いことから、AcBは水中でグラファイトより も凝集しやすいことが推察できる.

2. 固練り条件と分散状態変化への考察

今回調製した水系カーボンスラリーは図3より,固練りなしと比較してスラリーは固練り時の粒子濃度の増加に対し一度相対粘度が低下した後,極小値を持って再度相対粘度が増加している.このことから,粒子濃度の変化に対し粒子が分散し,極値をもって凝集していることが

Fig. 4 Particle size: AcB + Graphite slurry of each CMC additive amount mg m⁻² particle; a) 0.0, b) 0.1, c) 0.2, d) 0.4, e) 0.8, and f) Graphite slurry and AcB slurry without CMC and kneading.

研

分かる.

この結果に対し.図4a)からe)のグラフか ら分かる通り、固練り時の濃度が固練りなしの 2倍、3倍と増加するにつれて、固練りなしに おいて積算値が約50%以上に位置していた大 きい粒子が小さくなっていることが分かる. さ らに固練り時の粒子濃度の倍数が3倍を境に、 固練り時の粒子濃度が4倍、5倍と大きくなる と再度積算値が約50%以上に位置していた大 きい粒子が大きくなっていることが分かる.こ れらの結果から二種類の粒子のどちらかがの分 散状態が固練りにより変化したと考えられる. そして図4f)において CMC を添加していない 状態では、AcBの方がグラファイトよりも粒 子径が大きくなっていることから、 固練りによ り粒子の分散状態が変化したのは AcB である と推測することができる。その結果固練り時の 粒子濃度の増加に伴い AcB が分散することに より粘度が低下し,再度凝集したことで増粘し たと考えられる.

以上より粒子径の分布がシャープで均質な分 散状態を作るには固練り時の粒子濃度を調整す ることが必要であることが示唆された.

参考文献

- Lee J.-H., Paik U., Hackley V.A., Choi Y.-M., Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries, Journal of the Electrochemical Society, 152 (2005) A1763–A1769. https://doi.org/10.1149/1.1979214
- [2] Kitamura K., Tanaka M., Mori T., Effects of the mixing sequence on the graphite dispersion and resistance of lithium-ion battery anodes, Journal of Colloid and Interface Science, 625 (2022) 136–144. https://doi.org/10.1016/j.jcis.2022.06.006

- [3] Fairhurst D., Sharma R., Takeda S.-i., Cosgrove T., Prescott S.W., Fast NMR relaxation, powder wettability and Hansen Solubility Parameter analyses applied to particle dispersibility, Powder Technology, 377 (2021) 545–552. https://doi.org/10.1016/j.powtec.2020.09.002
- [4] Mori T., Kitamura K., Effect of adsorption behaviour of polyelectrolytes on fluidity and packing ability of aqueous graphite slurries, Advanced Powder Technology, 28 (2017) 280–287.

https://doi.org/10.1016/j.apt.2016.10.005

- [5] Kim K.M., Jeon W.S., Chung I.J., Chang S.H., Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries, Journal of Power Sources, 83 (1999) 108–113. https://doi.org/10.1016/s0378-7753(99)00281-5
- [6] Kitamura K., Mochizuki Y., Mori T., Study on particle dispersion changes over time in aqueous Al₂O₃ slurries containing ammonium polyacrylate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622 (2021) 126623.

https://doi.org/10.1016/j.colsurfa.2021.126623

[7] Grießl D., Huber K., Scherbauer R., Kwade A., Dispersion kinetics of carbon black for the application in lithium-ion batteries, Advanced Powder Technology, 32 (2021) 2280–2288.

https://doi.org/10.1016/j.apt.2021.05.003

[8] Dreger H., Bockholt H., Haselrieder W., Kwade A., Discontinuous and continuous processing of low-solvent battery slurries for lithium nickel cobalt manganese oxide electrodes, Journal of Electronic Materials, 44 (2015) 4434–4443.

https://doi.org/10.1007/s11664-015-3981-4

- [9] Temple C. Patton, Paint flow and pigment dispersion: a rheological approach to coating and ink technology, 2nd edition, Wiley-Interscience, (1979), ISBN: 978-0-471-03272-4.
- [10] Ishii M., Nakamura H., Influence of molecular weight and concentration of carboxymethyl cellulose on rheological properties of concentrated anode slurries for lithium-ion batteries, JCIS Open, 6 (2022) 100048. https://doi.org/10.1016/j.jciso.2022.100048

研

外部発表成果

口頭・ポスター発表

- 北村研太,森隆昌,"高分子添加スラリーの固練り条件と流動特性の関係",化学工学会第53回秋季大会,(Nagano & On line, Sep. 14–16) DD102. http://www3.scej.org/meeting/53f/index.html
- Kenta Kitamura, Takamasa Mori, "Effect of kneading on the particle dispersion in the slurry with polyelectrolyte", The 7th Interna-tional Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials. (ICCCI 2022) (Fujiyoshida, Nov. 15– 18, 2022) 1-I-A-04.

https://ceramics.ynu.ac.jp/iccci2022/index.html

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 82-85 /https://doi.org/10.14356/hptf.21110

HPTF21110

ボールミル中の粒子固着機構の解明

Analysis for Particle Adhesion Mechanisms during Ball Milling

研究代表者 Research leader: 久志本

築 Kizuku KUSHIMOTO

東北大学多元物質科学研究所 助教 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Assistant Professor E-mail: kizuku.kushimoto.d2@tohoku.ac.jp

抄 録

ボールミル中の媒体ボールや粉砕容器壁面に砕料粒子が強く凝集する固着は、その発生の予測が難 しく、ボールミルによる粉砕の制御の実現を妨げる主な要因の一つとなっていた。こうした現状の 背景には、ボールミル中の砕料粒子が固着する挙動を実験的に解析することが難しいことがあった。 一方、実験では解析困難な現象に対しシミュレーションによる解析が近年に盛んに行われており、 固着の発生メカニズムを解析できる可能性があった。しかしながら、ボールミル中の砕料粒子の運 動、破壊、凝集挙動を表現可能なシミュレーションモデルは確立されておらず、固着挙動の解析は シミュレーションを用いても難しかった。そこで本研究では、ボールミル中の砕料粒子の運動、破 壊、凝集挙動を表現するシミュレーションモデルを新規に構築した。

ABSTRACT

During ball milling, particles sometimes strongly adhere to the surface of grinding balls and the grinding chamber, and this adhesion phenomenon is called sticking. The elucidation of the sticking mechanisms has been one of the most important issues to realize the control of the grinding behavior during ball milling. However, the sticking mechanisms have not been elucidated because particle sticking behavior has difficulty in being analyzed experimentally. Although the simulation techniques have been utilized to analyze such the particle behavior, the particle sticking behavior has not been analyzed because there is no simulation model to represent the motion, breakage, and adhesion of particles. Therefore, in this project, we developed a new simulation model for representing the motion, breakage, and adhesion of particles.

研究背景と目的

ボールミルは,容器中に砕料粒子とともに粉 砕媒体となる媒体ボールを投入し,その媒体 ボールを衝突させることで粉砕を行う粉砕方法 の一種である.ボールミルの特徴は,その粉砕 方法のシンプルさから大規模化が可能であり, 砕料粒子の微細化速度も速い上に,到達可能な 研

粒子径もサブミクロンから数 µm までと小さい ことがあげられる. そのため, セラミックス(独 立行政法人日本学術振興会高温セラミック材料 第 124 委員会, 2010), 鉱業 (He et al., 2004), 医薬品 (Malamatari, 2018) など幅広い原料, 中間製品, 最終製品を製造するプロセスで利用 されている.

ボールミルはこうした優れた特徴を有する反 面,粉砕中に砕料粒子同士が凝集したり,容器 壁面や媒体ボール表面に強く付着することで固 着したりする上に,それら発生条件は特定され ておらず,このことが粉砕の制御を難しくして いる大きな要因の一つとなっている.特に,固 着が発生すると,容器から固着物を取り除く必 要があるため,操業自体を停止させる必要が あったり,装置自体の破損につながったりと大 きなトラブルにつながることが多い.したがっ て,ボールミル中で砕料粒子が固着するメカニ ズムを把握することは,ボールミルの粉砕の制 御を実現するために必要である.

ボールミル中の固着は,砕料粒子が媒体ボー ルと壁面間で粉砕されると同時に,砕料粒子と 壁面間の付着力が生じることで発生すると考え られている.一方で,こうした粉砕と付着力が 作用する状況はボールミル内のあらゆる場面で 起こっていると考えられるため,どのような条 件のときに固着が起こるのか,その発生メカニ ズムを明らかにすることが固着を防ぐ上で必要 である.しかしながら,固着が生じるときの砕 料粒子の粉砕挙動や付着し凝集する挙動を実験 から解析することは難しく,固着の発生メカニ ズムは明らかにされていない.

こうした実験では解析困難な現象に対し有効 な手法としてシミュレーションによる解析があ る.シミュレーションはコンピュータ上で実際 の現象を模擬する手法であり、全ての砕料粒子 への作用力、時々刻々と変化する状態を全てモ デル化し計算するため、砕料粒子一粒一粒の運 動、破壊、凝集挙動を任意の時間ごとに取得す ることができる.したがって、ボールミル中の 固着発生メカニズムについても、シミュレー ションを活用することで明らかにすることがで きる可能性がある.一方で,シミュレーション により固着発生メカニズムを解析する場合, ボールミル内の砕料粒子の運動,破壊,凝集挙 動を表現するシミュレーションモデルが必要と なるが,現状それら全てを満たすモデルは確立 されていない.

こうした中,我々の研究室では,ボールミル 内の砕料粒子の運動と破壊挙動を表現するシ ミュレーションモデルとして Advanced Distinct Element Method (ADEM) (Ishihara et al., 2014) を独自に開発済みである.したがって,ADEM を改良し,凝集を考慮できるような新たなモデ ルを構築することができれば,固着発生メカニ ズムに迫ることができると考えられる.そこで 本研究では,ADEM をベースとして,新たに 凝集を考慮するモデルの開発を目的とした.

研究方法

本研究では、ボールミル中の砕料粒子の運動, 破壊,凝集挙動を表現するモデルを開発した. 砕料粒子の運動と破壊については ADEM を適 用し, ADEM に凝集挙動を表現するために付 着力を追加したモデルを構築した.ここでは, ADEM と開発したモデルの詳細を示す.

ADEM は DEM (Cundall and Strack, 1979)を ベースに開発された手法である.DEM では多 くの場合,砕料粒子一粒の運動を一つの軟体球 で表現し,その軟体球同士の衝突をモデル化す ることで砕料粒子群の運動を表現する.一方で, 砕料粒子一粒を一つの軟体球で表現している都 合上,そのままでは球体内部の応力状態の情報 を得ることができず,砕料粒子の破壊を考える ことが難しい.そこで ADEM では,砕料粒子 一粒を DEM で表現される砕料粒子よりも微小 な複数の構成粒子の集合体として取り扱い,こ れら構成粒子間を連結バネと呼ばれる仮想的な バネで結合するモデルを考える.このように砕 料粒子を取り扱うことで,連結バネのひずみに より砕料粒子内の応力状態が把握できるように なる.加えて、その連結バネのひずみに応じて 連結バネを破断することで、砕料粒子の破壊も 表現できる.

連結バネによる力は法線方向,接線方向に分 けて次式から計算する.

$$\boldsymbol{F}^{S,n} = K_{S,n}\boldsymbol{a}_{S,n} + \frac{\eta_{S,n} \Delta \boldsymbol{a}_{S,n}}{\Delta t}$$
(1)

$$\boldsymbol{F}^{\mathrm{S},\mathrm{t}} = \boldsymbol{K}_{\mathrm{S},\mathrm{t}} \boldsymbol{a}_{\mathrm{S},\mathrm{t}} + \frac{\eta_{\mathrm{S},\mathrm{t}} \varDelta \boldsymbol{a}_{\mathrm{S},\mathrm{t}}}{\varDelta t}$$
(2)

ここで、添え字のSは連結バネであることを 表し、nとtはそれぞれ法線と接線を意味する. Kはバネ定数、 η は粘性係数、aは相対変位ベ クトル、tは時間、Fは構成粒子への作用力を それぞれ表す、また、連結バネの破断は、連結 バネのひずみが最大ひずみ ε_{max} より大きくなっ たときとし、次式で与える.

$$|\boldsymbol{a}| > (1 + \varepsilon_{\max}) |\boldsymbol{r}_{ij0}| \tag{3}$$

ここで,**r**_{ij0}は連結バネで結合された2つの構成粒子間の初期の相対位置ベクトルを表す.

構成粒子同士は連結ばねで結合されているだ けでなく、お互いの接触も考慮する.構成粒子 間の接触力についても、法線と接線に分解して 計算する.接触力の法線成分はバネとダッシュ ポットが並列接続された Voigt モデルを適用し、 接触力の接線成分は摩擦力の影響を考慮するた めに、Voigt モデルにスライダーを追加したモ デルを採用する.このようにモデル化すると、 接触力の法線成分 **F**ⁿ と接線成分 **F**^t はそれぞれ 次式で与えられる.

$$\boldsymbol{F}^{n} = \left(K^{n}u^{n} + \eta^{n}\frac{\mathrm{d}u^{n}}{\mathrm{d}t}\right)\boldsymbol{e}^{n}$$

$$\boldsymbol{F}^{t} = \min\left\{\boldsymbol{\mu}\left|\boldsymbol{F}^{n}\right|, K^{t}\left(\boldsymbol{u}^{t} + r\boldsymbol{\varphi}\right) + \eta^{t}\left(\frac{\mathrm{d}u^{t}}{\mathrm{d}t} + r\frac{\mathrm{d}\boldsymbol{\varphi}}{\mathrm{d}t}\right)\right\}\boldsymbol{e}^{t}$$

$$(5)$$

ここで, *u* は並進変位, *φ* は角変位, *μ* は摩擦 係数, *r* は粒子半径, *e* は単位方向ベクトルを それぞれ表す. 以上のようにして, 砕料粒子の 運動と破壊が表現する. 砕料粒子の運動,破壊,凝集の全てを表現す るために,砕料粒子の凝集挙動についてモデル 化し ADEM に追加する.砕料粒子の凝集は何 らかの付着力が砕料粒子間あるいは破砕片同士 の付着力に加え,砕料粒子内の破断面間にも作 用することで起こると考えられる.これを ADEM で表現される砕料粒子に置き換えると, 連結バネにより結合していない全ての構成粒子 間に付着力を作用させればよいといえる.

また、考慮すべき付着力としては、物体間に 普遍的に作用する van der Waals 力がまずあげ られる. さらに、ボールミル内部では砕料粒子 が粉砕されると同時に、砕料粒子表面の水酸基 の結合が破断されることである一定の水分が吸 着している状態にあると考えると、液架橋力も 付着力として考える必要があるといえる.

そこで開発したモデルでは、砕料粒子の凝集 挙動を表現するために、互いに結合していない 構成粒子間に van der Waals 力と液架橋力を作 用させる.これにより、砕料粒子の運動、破壊、 凝集挙動が表現可能とする.

研究成果

構築したシミュレーションモデルで、砕料粒 子の運動,破壊,凝集挙動が表現できることを 確認するために、複数の砕料粒子が媒体ボール に捕獲されるときの砕料粒子挙動について、付 着力がある場合とない場合で比較する. 今回の シミュレーションでは、平板上に密接した10 個の砕料粒子を静置し, その中心に向かって媒 体ボールを初速 100 cm/s で衝突させたときの 砕料粒子挙動を可視化する. このときの砕料粒 子はアルミナ粒子を,媒体ボールはジルコニア ボールをそれぞれ想定している.図1に付着力 を考慮した場合としない場合、それぞれにおけ る砕料粒子挙動を示す. 付着力を考慮していな い場合は、砕料粒子が破壊され、その破砕片は 四方八方に飛び散る様子が見られた.一方で, 付着力を考慮した場合には、媒体ボールに捕獲 された砕料粒子は破壊されるものの、凝集体を

Fig. 1 Comparison of particle behavior with and without adhesion when a grinding ball collides.

形成し,媒体ボール表面に付着したままになっ ていることがわかる.以上の計算結果から,開 発したシミュレーションモデルは,砕料粒子の 運動,破壊,凝集挙動が計算でき,媒体ボール 表面への固着も表現できる可能性があることが わかった.

参考文献

- Cundall P.A., Strack O.D.L., A discrete numerical model for granular assembles, Geotechnique, 29 (1979) 47–65. https://doi.org/10.1680/geot.1979.29.1.47
- He M., Wang Y., Forssberg E., Slurry rheology in wet ultrafine grinding of industrial minerals, Powder Technology, 147 (2004) 94–112.

https://doi.org/10.1016/j.powtec.2004.09.032

- Ishihara S., Zhang Q., Kano J., ADEM simulation of particle breakage behavior, Journal of the Society of Powder Technology, Japan, 51 (2014) 407–414. https://doi.org/10.4164/sptj.51.407
- Malamatari M., Taylor K.M.G., Malamataris S., Douroumis D., Kachrimanis K., Pharmaceutical nanocrystals: production by wet ball milling and applications, Drug Discovery Today, 23 (2018) 534–547.

https://doi.org/10.1016/j.drudis.2018.01.016

独立行政法人日本学術振興会高温セラミック材料第124 委員会,先進セラミックスの作り方と使い方,日 刊工業新聞社,日本(2010) ISBN: 4-526-05432-1.

外部発表成果

口頭・ポスター発表

 1. 久志本 築,加納純也,"ボールミル中の凝 集現象の解析",化学工学会第54回秋季大 会(Hakata, Sep. 11–13, 2023) SY-54 D106. 久志本 築,加納純也,"ボール衝突挙動が 砕料粒子の粉砕に及ぼす影響の解析",第 60回粉体に関する討論会(Tokyo, Nov. 8–10, 2023)講演 3–4.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 86-92 /https://doi.org/10.14356/hptf.21111

HPTF21111

超音波振動による気相中懸濁微粒子の挙動制御および集塵

Motion Control of Suspended Particles in Air and Dust Collection with Ultrasonic Vibration

研究代表者 Research leader: 河府 賢治 Kenji KOFU 日本大学理工学部 教授 College of Science & Technology, Nihon University, Professor E-mail: kofu.kenji@nihon-u.ac.jp

抄 録

本研究において, 閉空間における超音波振動による音響流と粒子挙動の変化を明らかにし, さらに 流れ場における流れの変化についても明らかにした. 閉空間ではレイノルズ数により音響流の渦数 が変化し, 高レイノルズ数では, 非対称の渦が発生することがわかった. そして粒子挙動シミュレー ションの結果, 直径1µmの粒子は音響流とともに動き, 20µmの粒子は音響放射力により節に移 動することがわかった. これは, 粒子挙動に対して支配する要因が粒子径に依存することを意味す る. また流れ場では, 流速1m/s では振動振幅を8µmにしても流れは変化しないが, 流速0.15 m/s では正弦波のように流れが変化した. これは, 流速や振動条件を変えることで流れを制御できるこ とを意味する.

ABSTRACT

The purpose of this study was to clarify the characteristics of acoustic streaming and particle motion with ultrasonic vibration in a closed field. Additionally, the aim also includes an investigation on flow transformation in the flow field. As a result, in the closed field, the number of vortices of acoustic streaming was changed by the Reynolds number. In flow field, the flow did not change when the flow velocity is 1 m/s, even though the vibration amplitude was set at 8 μ m. But at the flow velocity 0.15 m/s, the flow changed like a sinusoidal wave. This means that the flow can be controlled by changing the flow velocity or vibration condition. As a result of the simulation, particles with a diameter of 1 μ m were moved by acoustic streaming. On the other hand, particles with a diameter of 20 μ m were moved to the antinode of acoustic pressure by acoustic radiation force. This means that the factors that dominate particle motion depend on particle diameter.

研究背景と目的

近年、マイクロマニピュレーションによる細

胞操作や,化学材料などで原料微粉体の生成 など,様々な分野で微小物体を操作する技術が 求められている(Yamakoshi, 1996; Koyama and

Copyright © 2024 The Author. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

Nakamura, 2011). これら微小物体は接触での マニピュレーションが難しく, 異物混入のリス クを考慮すると非接触のマニピュレーションが 望ましい. しかしながら, 電気泳動や磁力を利 用した方法では, 対象となる粒子が伝導物質で ある必要性がある.

小塚らにより、超音波定在波音場内の物体に 音響放射力が作用することが示されている (Kozuka et al., 2008). 定在波音場内では, この 音響放射力により定在波の節の位置に物体を動 かすことができる. つまり, 非接触でのマニピュ レーションが可能であると言える. 劉らは, 2 枚の平板を用意して粒子径や音圧, 流速などの 条件を変えながら超音波振動による粒子挙動実 験を行い.数十 µm 程度の粒子径の挙動は節方 向へ移動させることができたが、数µm 程度の 粒子径では不規則な挙動を示した(Liu et al., 2015). 小塚らにより, 超音波音場内には Rayleigh 型音響流が発生することが示されてい る. 数十 µm の粒子は流れの中でも音響放射力 を利用することでマニピュレーションが可能に なると言えるが、微小粒子の場合は、音響放射 力が小さく, 音響流の影響を受けた結果と考え られる. つまり、微小粒子の非接触挙動制御の ためには音響流の解明が必要である.

そこで、本論では閉空間でたわみ振動におけ る空間の音圧分布測定、音響流の測定・解析を 行う.節の数と共振周波数を変えて結果を比較 し、閉空間の音響流の解明を目指す.また、閉 空間における音響流のシミュレーション再現を 行い、その流れに粒子を投入し、粒子挙動を分 析する.さらに、流れ場において、閉空間と同 じ条件で種々の実験を行い、音響流の発生する 空間において流れの変化を観測し、振動条件が 及ぼす流れの変化を調査・考察する.

研究方法

1 計算方法および条件

まず,空間内の音圧分布を計算し,その結果 を利用して音響流を計算する.音圧分布の計算

Cable 1 Analysis condition		
Domain fluid	Incompressible air	
Fluid model	Laminar flow	
Time step [s]	1/20000	
Frequency f [kHz]	20, 25, 30	
Amplitude $A_{\rm m}$ [µm]	2, 4, 6, 8, 10	
Hight H [mm]	14, 9, 6	

Fig. 1 Calculation area.

条件を**表1**に, 解析領域を図1に示す. Vibration plate と示した境界に式(1)の振動速 度を与え,たわみ振動を再現する.

$$v = A_{\rm m} \times 2\pi f \times \cos 2\pi f t \times \cos \frac{N\pi x}{L} \tag{1}$$

 $A_{\rm m}$ は振幅, fは周波数, xは振動板端からの 距離, tは振動開始からの経過時間, Nは節数 を表す. Reflection plate と示した境界には,比 音響インピーダンスを設定し,実験装置で用い たアクリルの物性値である4032 Pa·s/mとした.

音響流の計算では、Vibration plate および Reflection plate の境界に Stokes drift を設定する. 音響流は音波の2次の非線形効果であり、 Stokes drift は2次の項のずれを修正する式であ る.以下に Stokes drift 項の式を示す.

$$u_2 = -\left\langle \left(\frac{u_1}{i\omega} \cdot \nabla\right) u_1 \right\rangle \tag{2}$$

ここで、 u_2 は流速、 u_1 は音速を示し、〈〉は 時間平均を表す、得られた音響流中に粒子を投 入し、粒子挙動を計算する、粒子には水を用い、 粒子径 $d_p = 1$, 10, 20 μ m の条件で行い、結果 を比較する。

2. 実験方法および条件

振動条件を表2に示す.閉空間,流れ場とも に表2の条件で実験を行う.

2.1 閉空間

音圧測定装置の概略図を図2に示す.LDV のレーザをアクリル板に対して垂直に照射し, 対面に鏡を置くことでアクリル容器内の音圧を 測定する.音響流の可視化実験装置の概略図を 図3に示す.超音波定在波が形成される空間内 を煙で満たし,PIV レーザを照射することで流 れの可視化を行う.その様子を高速度カメラで 撮影し,得た画像を解析する.音響流の可視化

Table 2 Experimental condition.

		Number of nodes	
		4	6
Frequency	20	0	0
	25		\bigcirc
	30		\bigcirc

Fig. 2 Experimental apparatus (Sound pressure distribution, closed field).

Fig. 3 Experimental apparatus (Visualizing acoustic streaming, closed field).

実験では振動板振幅 A_m を 2 μm ごとに 10 μm まで変えて実験し, 振幅違いによる比較も行う.

2.2 流れ場

音圧測定装置の概略図を図4に示す.コンプ レッサを用いてアクリル容器内に流速1m/sの 流れ場を設定し,閉空間と同様の方法で圧力分 布測定を行う.流れの可視化実験装置の概略図 を図5に示す.音響流が発生する空間に空気を 流し,閉空間と同様の方法で可視化を行い,流 れの変化を調べる.流れの可視化実験では流速 1m/sと流速0.15m/sの2条件で実験を行う.

研究成果

1 閉空間

1.1 音圧分布測定

図6に示すような振動モードの振動板を用い て空間内の音圧分布を測定した.代表して, 20 kHz,節6個,振幅10 µmの結果を図7に示 す.これら2つの図から,振動モードと空間の

研 究 助 成

Fig. 4 Experimental apparatus (Sound pressure distribution, flow field).

Fig. 5 Experimental apparatus (Visualizing acoustic streaming, flow field).

音圧分布の節位置が定性的に一致したといえ る.その他条件でも振動モードに対応した音圧 分布を得られた.

1.2 音響流可視化実験

各振動条件で発生した音響流を高速度カメラ を用いて撮影し、ベクトルおよび流線の解析を 行った.節6、f = 20 kHz、 $A_m = 2 \mu m$ の振動条 件で測定した音響流の結果を図8に、節6、f = 25 kHz、 $A_m = 2 \mu m$ の振動条件で測定した音響 流の結果を図9に、節4、f = 20 kHz、 $A_m = 2$

Fig. 6 Vibration plate (Node number 6).

Fig. 7 Sound pressure distribution (closed field).

Fig. 8 Acoustic streaming analysis (f = 20 kHz, node 6, $A_{\rm m} = 2 \ \mu {\rm m}$).

4 µmの振動条件で測定した音響流の結果を図 10 に示す.いずれの図においても,節の数の2 倍の渦が左右方向に形成されたことから, Rayleigh型の音響流が発生したといえる.しか し,図8では上下方向に渦が1つ,図9では渦 が2つ,図10では上下に非対称な渦が2つと, 上下方向では渦の数と形状が異なった.矢野に よると,非圧縮性モデルに基づく音響流のシ ミュレーションにおいて,レイノルズ数を変化 させていくとき,Rayleigh型の音響流が不安定 になる段階があると示唆している(Yano, 2005).そのため,上記で示したような渦の違 いをレイノルズ数で評価する.代表速度Uを 解析から得られた音響流の最大流速,代表長さ

(a) Vector analysis

1 m を節間距離とし,動粘度 v には常温常圧の 空気の物性値である 1.512 × 10⁻⁵ m²/s を用い る.図8から図10 におけるレイノルズ数の値 を以下に示す.

節 6, 20 kHz,
$$A_{\rm m} = 2 \,\mu{\rm m}$$

$$Re = \frac{0.0492 \times 0.015}{1.512 \times 10^{-5}} = 49$$

節 6, 25 kHz, $A_{\rm m} = 2 \,\mu{\rm m}$

$$Re = \frac{0.1044 \times 0.015}{1.512 \times 10^{-5}} = 104$$

節 4, 20 kHz, $A_{\rm m} = 4 \,\mu{\rm m}$

$$Re = \frac{0.1020 \times 0.0225}{1.512 \times 10^{-5}} = 152$$

これらの値から,レイノルズ数が二桁程度では 渦が1つ,100近傍では渦が2つ,150以上で は渦が上下非対称になる傾向にあると考えられ る.また,節の数が減ると節間距離が広がるた め,音響流の流速の変化がレイノルズ数へ与え る影響が大きくなる.すなわち,節の数が減る と音響流が上下に非対称になりやすいと考えら れる.

2 シミュレーション結果

2.1 音圧分布シミュレーション

節 6, f=20 kHz, A_m=10 μm の振動条件を設 定して行った音圧分布の計算結果を図 11 に示 す.図 11 から,設定した振動条件と対応した 音圧分布が得られた.

2.2 音響流シミュレーション

図11の音圧分布をもとに行った音響流の計

Fig. 11 Sound pressure simulation (f = 20 kHz, node 6, $A_{\rm m} = 10 \ \mu {\rm m}$).

算結果を図 12 に示す.図 12 から,節に対して 2 倍の数である 12 個の渦が形成されたことか ら Rayleigh 型音響流が再現できたといえる.

2.3 粒子挙動シミュレーション

図 12 の流れに粒子を投入し、粒子挙動を計 算した. 粒子挙動の軌跡を表したものを図 13 に示す. 図 13 から、 $d_p = 1 \mu m$ では粒子は音響 流に従って循環し、 $d_p = 20 \mu m$ では音響放射力 が作用して凝集したことがわかる. また、 $d_p =$ 10 μm では音響流に従いつつも最終的に特定の 箇所に凝集した. これらのことから、粒子径の 大きさにより挙動に支配的な要素は異なり、数 μm の粒子では音響流が、数十 μm の粒子は音 響放射力が粒子挙動に支配的であると考えられ る. また、十数 μm の粒子は音響流と音響放射

Fig. 12 Acoustic streaming simulation (f = 20 kHz, node 6, $A_m = 10 \mu m$).

Fig. 13 Particle behavior simulation (f = 20 kHz, node 6, $A_m = 10 \ \mu m$).

研

力が影響を与えるため、挙動制御には両者を考 慮する必要があると考えられる。

3 流れ場

3.1 音圧分布測定

図6に示す振動モードの振動板を用いて空間 内の音圧分布を測定した.その結果を図14に 示す.図6および図14から,振動モードに対応した音圧分布を得られたといえる.また,図 7と図14を比較して,閉空間と流れ場で音圧 分布は定性的に一致した.すなわち,閉空間と 流れ場で音圧分布に変化は生じないといえる. 3.2 流れの可視化実験

節 6, *f* = 30 kHz, *A*_m = 8 μm の振動条件にお ける流れを可視化し, 解析を行った結果を図 15 および図 16 に示す. 図 15 は流速 1 m/s を, 図 16 は流速 0.15 m/s をそれぞれコンプレッサ で与えたものである. 図 15 および図 16 から,

Fig. 14 Sound pressure distribution (flow field).

流速 1 m/s のとき,流れは音響流の影響を受け ずに直進し,流速 0.15 m/s のとき,流れは音響 流の影響を受けて正弦波のように変化した. こ れらの流れの水平方向成分はコンプレッサに, 鉛直方向成分は音響流による寄与と考えられ る.すなわち,コンプレッサが与えた流速 1 m/s は音響流の速度よりも遥かに大きいため流れが 変化せず,流速 0.15 m/s に下げると水平方向成 分が減少して流れが変化したと推測できる. こ の傾向から,コンプレッサや音響流の流速を調 節することで任意の流れを作り出すことが可能 と予測され,これを利用すれば微小粒子のマニ ピュレーションが容易になると期待できる.

4. 結言

本論では, 閉空間と流れ場の2つの状況で音 響流の挙動等の性質の解明を目的として実験を 行った. その結果, 以下のことが分かった.

音響流の形状はレイノルズ数に依存し、レイ ノルズ数が二桁程度では上下方向に渦が1つ、 100 近傍では渦が2つ、150 以上では上下非対 称な渦が形成される.また、振動板の節の数を 減らすと流速の変化に対してレイノルズ数が敏 感になり、渦が非対称になりやすい.

粒子径によって挙動に支配的な要素は異な り,数μmの粒子では音響流が,数+μmの粒 子では音響放射力が挙動に支配的である.+数 μmの粒子は音響流と音響放射力の両者が挙動 に影響を与える.

Fig. 15 Air flow between plates (f=30 kHz, node 6, $A_m = 8 \mu m$, u = 1 m/s).

研

究

助

成

音響流が流れに及ぼす影響は流れの速度と関係し,両者のパラメータを変化させることで任 意の流れの制御が期待できる.

参考文献

- Koyama D., Nakamura K., Noncontact ultrasonic actuators, The Journal of the Acoustical Society of Japan, 67 (2011) 75–80. https://doi.org/10.20697/jasj.67.2_75
- Kozuka T., Yasui K., Tuziuti T., Towata A., Iida Y., Measurement and calculation of the radiation force on a small object in a standing wave field, The Transactions of the

Institute of Electronics, Information and Communication Engineers, 12 (2008) 1156–1160.

- Liu X., Suzuki H., Kofu K., Control the particle motion by ultrasonic standing wave, The 6th Asian Particle Technology Symposium, PO02-01 (2015) 272.
- Yamakoshi Y., Measurement technique utilized radiation pressure for micro particle, The Journal of the Acoustical Society of Japan, 52 (1996) 210–216. https://doi.org/10.20697/jasj.52.3_210
- Yano T., Acoustic streaming in resonators, Journal of Japan Society of Fluid Mechanics, 24 (2005) 371–380. https://doi.org/10.11426/nagare1982.24.371

<u>外 部 発 表 成 果</u>

口頭・ポスター発表

 Kenji Kofu, Kazuki Koinuma, Hirofumi Nonaka, "Formation of acoustic streaming in standing wave sound field by ultrasonic vibration", The 11th International Conference on Multiphase Flow (Kobe, Apr. 2–7, 2023) #758.

 2. 鯉沼 和希,河府 賢治,"超音波定在波音場 における音響流形成および粒子挙動変化", 日本混相流学会 混相流シンポジウム 2023 (Sapporo, Aug. 24–26, 2023) P085.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 93-98 /https://doi.org/10.14356/hptf.21112

HPTF21112

矩形ダクト流路内の粒子挙動の制御

Control of Particle Preferential Location in a Square Duct Flow

研究代表者 Research leader: 関本 敦

敦 Atsushi SEKIMOTO

岡山大学大学院環境生命自然科学学域 准教授 Institute of Environmental, Life, and Natural Science and Technology, Okayama University, Associate Professor E-mail: asekimoto@okayama-u.ac.jp

抄 録

正方形ダクト乱流における平均二次流れは断面内の熱物質輸送を担うため、その制御は高効率な熱 交換器や管路内での連続化学反応や粒子分離などの応用が期待できる.これまでに、低レイノルズ 数においてダクトの下壁面を加熱することで慣性力と浮力が同程度となり、平均二次流れのパター ンが大きく変化することが知られていたが、それらを制御する手法については、これまで議論され ていなかった.本研究では、数値シミュレーションを用いてダクト流路の下壁面の加熱制御を検討 し、流路内二次流れを大幅にコントロールできるパラメター範囲を特定した.さらに、強化学習を 用いた能動加熱制御手法を開発し、より安定的に二次流れを制御可能であることを示した.この流 動制御技術を粒子分離装置へと応用するために、数値シミュレーションを行いダクト乱流中の粒子 挙動について解析した.これらの結果は、矩形流路を利用した連続化学反応や連続粒子分離装置へ の応用が期待できる.

ABSTRACT

Since the mean secondary flow in square duct turbulence involves heat and mass transport in the cross-section, its control has potential applications in high-efficiency heat exchangers, continuous chemical reactions in ducts, and particle separation. It has been known that heating the lower wall of a duct at low Reynolds numbers, where inertial and buoyancy forces are comparable, can significantly change the pattern of mean secondary flow; however, the control methods have not been discussed. In this study, numerical simulations of heating control of the lower wall surface of a duct channel were performed systematically to identify the range in which the secondary flow in the channel can be significantly controlled. Furthermore, an active heating control method using reinforcement learning was developed, showing that the secondary flow can be controlled more stably. In order to apply this flow control technique to a particle separation system, direct numerical simulations were performed to analyze particle dynamics in ducted turbulent flow. These results are expected to be applied to continuous chemical reactions and particle separation devices using rectangular flow channels.

研究背景と目的

不斉炭素をもつ有機物やらせん構造をもつ分 子を化学合成する際には、右手と左手のように カイラリティが異なる分子も合成される.これ らの分子は生体内活性が異なり、一方は薬とな るがもう一方は人体に有害となる場合があり、 複数のプロセスや触媒を用いて、特定のカイラ リティを持つ物質を選択的に分離・合成する必 要がある.目的に応じた触媒の研究開発費や触 媒の収率の低さから大量の原料を用いる場合が あり、医薬品が高騰する原因となる.

流体中を移動するカイラル粒子は、図1のように進行方向に垂直な方向に並進移動(ドリフト)し、カイラリティが異なれば反対方向へドリフトすることが古くから知られている(Howard et al., 1976).また、矩形ダクトのような角を有する流れでは管形状の異方性によって二次流れが生じるため、球形の粒子であっても乱流渦の影響によって、特定の領域(Preferential location)に集まる現象が知られている(Winkler et al., 2004, 2006; Noorani et al., 2016; Scherer et al., 2021).さらに、筆者らはこれまでに、低レイノルズ数ダクト内流れにおいて二次流れの状態は4つ渦状態を示すこと(Uhlmann et al., 2007; Pinelli et al., 2010)や壁面加熱による複合

Fig. 1 An example of particle behavior in a rotating cylinder.

対流と二次流れパターン(Sekimoto et al., 2011) について解明してきた.これらによって,二次 流れパターンを壁面形状効果と浮力による体積 力によって制御できることが示唆され,工学的 応用が期待できる.そこで,本研究では,ダク ト内の二次流れパターンを制御し,粒子分離回 収技術の開発を目指す.

矩形流路に関するパラメターは断面アスペク ト比や管路内流量,溶媒の粘性や粒子との相互 作用など多くあり,最適な装置設計のためには, 数値シミュレーションが欠かせない.本研究で は,具体的には,ダクト内での非球形のカイラ ル粒子のふるまいをストークス近似の下で流体 計算によって検討する.また,多くのパラメター を効率よく探索するためにはベイズ最適化や強 化学習による効率的な自動推定方法の開発も必 要である.流動制御では下壁面を加熱するだけ の単純なものを考え,深層強化学習の枠組みを 適用し,加熱量を自動制御し,特異な乱流状態 を持続させて,4つ渦の二次流れパターンを安 定化させることを試みる.

研究成果

1.2次元でのカイラル粒子の挙動の数値解 析

1.1 数值計算手法

流体数値シミュレーションでの典型的な2次 元キャビティ流れに慣性粒子(粒子を質点とし て考えて,流体との相互作用はストークス近似 の下で簡単化した粒子モデル)を流した系を考 える.粒子同士の衝突も考えず,粒子には重力 とカイラル性に応じた力が働くものとする.溶 媒には,水などの非圧縮性ニュートン流体を考 えその支配方程式は次のように表せる.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho_{\rm f}} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) (1)$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho_{\rm f}} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) (2)$$

研

究

助

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3}$$

ここで, (*u*, *v*) は流体要素の流速, *p* は圧力, ρ_f は流体の密度(一定), *v* は流体の動粘性係 数である. また, 粒子の運動方程式から, 次の 支配方程式が得られる.

$$\frac{\partial u_{\rm p}}{\partial t} = \frac{1}{\tau_{\rm p}} \left(u - u_{\rm p} \right) + \gamma \cos \theta \tag{4}$$

$$\frac{\partial v_{\rm p}}{\partial t} = \frac{1}{\tau_{\rm p}} \left(v - v_{\rm p} \right) + \gamma \sin \theta + g \tag{5}$$

$$\frac{\partial \omega_{\rm p}}{\partial t} = \frac{1}{\tau_{\rm \omega}} \left(\omega - \omega_{\rm p} \right) \tag{6}$$

ここで、粒子の軸の向きを θ で表し、その角速 度を ω_p とする. (u_p, v_p) は粒子の流速ベクトル で、gは重力加速度、 γ はカイラリティに関す るモデルパラメターである. τ_ω と τ_p は粒子が 流体の渦度と流速に追随する無次元緩和時間 (ストークス数)を表す(今回は 0.01 で固定し、 粒子が流体に追随しやすいものとする). キャ ビティ流れのレイノルズ数は $Re = U_w L/v = 1000$ で一定とし、粒子フルード数 $Fr = U_w / \sqrt{gL}$ と カイラリティパラメター $Ch = \text{sign}(\gamma) \sqrt{|\gamma|L} / U_w$ を変化させる. 初期粒子の位置と角度は図 2 の ように均一に配置する.

Fig. 2 The streamlines of a cavity steady flow at Re = 1000; the color represents the vorticity, and the orange dots and arrow represent the initial particle positions and angles, respectively.

1.2 重力の粒子への影響

粒子フルード数 Fr を変化させた結果を図 3 に示す.カイラリティパラメターは Ch = 0 で ある.フルード数 Frが1のオーダーでは粒子は, 流れの強さと比べて相対的に重たい状態であ り,キャビティの底面に均一に集まる(図 3(a)).粒子が相対的に軽くなると,流体に追 随しやすくなり,キャビティ渦にトラップされ る.その状態で長時間計算を持続させると次第 に流れの淀み点付近に集まる様子が確認でき る.重力沈降効果と流体の相互作用を最大にす るためには,粒子の重さに加えて,流路の大き さや代表流速も加味して適切な無次元数を設定 した設計が重要である.

1.3 カイラリティパラメターの影響

粒子フルード数をFr = 3に固定し,カイラ リティパラメターを $Ch = \pm 10, \pm 20$ と変えた結 果が図4である.沈降した粒子は流路下壁面の 左右に不均一に分かれており,図2の初期条件 のもとでは,Ch = -10の場合は左右に約8:2 の比でわかれ,Ch = 10の場合は約3:7程度の 比で分かれた. $Ch = \pm 20$ の場合も同様の結果が 得られている.粒子が特定の領域に集まる挙動 にカイラリティの影響が十分確認でき,分離操

Fig. 3 The effect of gravity on the preferential location of particles.

作を繰り返すことで、分離性能を向上できると 期待できる。今後、3次元へ拡張する際には、 より多くのパラメターが関わると同時に、3次 元の流動パターンの制御も重要な課題である。 以下では、3次元流路として正方形ダクトを考 える。

2. 二次流れの熱的流動制御

2.1 臨界レイノルズ数付近における二次流 れ

正方形ダクトなど角を有する管路内の乱流の 平均流には、角へと向かうプラントルの第2種 二次流れが生じる(図5).通常は図5(c)のよ うに8つ渦のパターンであるが、臨界レイノル

Fig. 4 The effect of the chiral parameter on the preferential location of particles.

ズ数付近では**図 5(a)** や **(b)** のような 4 つ渦の二 次流れパターンとなることが報告されている (Uhlmann et al., 2007; Pinelli et al., 2010).本研 究では,この特異な二次流れパターンに浮力に よる熱対流を加えることで,自由に制御する手 法を開発した.

2.2 支配方程式と無次元パラメター

支配方程式は,連続の式と Navier-Stokes 方 程式,および,エネルギー保存則で,浮力項は Boussinesq 近似を適用する.

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\frac{1}{\rho} \nabla p + v \nabla^2 \boldsymbol{u} + g \beta (T - T_0) \boldsymbol{e}_y (7)$$

$$\nabla \cdot \boldsymbol{u} = 0 \tag{8}$$

$$\frac{\partial T}{\partial t} + (\boldsymbol{u} \cdot \nabla) T = \kappa \nabla^2 T \tag{9}$$

ここで、u は流速、p は圧力、 ρ は流体の密度、 v は動粘性係数、g は重力加速度、 β は温度変 化に伴う体膨張係数、T は温度、 κ は熱拡散係 数である。数値計算手法は既往の研究(Sekimoto et al., 2011) と同じであり、流れに関わる無次 元パラメターはレイノルズ数、プラントル数、 リチャードソン数であり、次のように定義され る.

$$Re_{\rm H} = \frac{u_{\rm b}H}{v}, Pr = \frac{v}{\kappa}, Ri = \frac{g\beta\Delta TH}{u_{\rm b}^2}$$
 (10)

ここで、 u_b は平均バルク流速、Hはダクト幅 $\Delta T = T_H - T_L$ はダクト上壁面と下壁面の温度差

Fig. 5 Mean secondary flow at marginal Reynolds number, $Re_{\rm H} = 2200$. (a) 4-vortex (type I) pattern, (b) 4-vortex (type II) pattern, (c) 8-vortex pattern.

Fig. 6 The result of the 8th episode. (a) The time variation of Richardson number. (b) The time variation of indicator function.

である.計算領域は流れ方向に*L/H* = 2πとし 格子点数は 128 × 65 × 65 とした.

2.3 強化学習による熱の動的制御

乱流の数値シミュレーションを環境として, 強化学習の枠組みを導入する. 強化学習には DDPG を利用し、あるステップtで、エージェ ントは数値シミュレーションから状態 S,とし て二次流れの流速成分の第0,第1,第2フー リエモードを観測する.次に、状態から深層 ニューラルネットワーク(DNN)で実装され た方策 Пから行動 a, であるリチャードソン数 Riを決定し、数値シミュレーションに反映さ せる. その後, 13H/uh だけ数値シミュレーショ ンを時間発展させる. エージェントは次の状態 *S*_{t+1}を観測して制御に対する報酬 *r*_{t+1} を得る. これを 200 回繰り返して1エピソードとして学 習を繰り返し行う、このアルゴリズムでは、行 動であるチャードソン数*Ri*を決定する DNNと 報酬の期待値を予測する DNN の2つがある. 報酬には、4つ渦の二次流れパターンを示す指 標 I を利用し、図 5(b) の4つ渦の二次流れ(I <0)を目標とした.

2.4 強化学習の結果

図6は第8エピソードまで学習を続けた結果 で、リチャードソン数の時間変化を見ると、時 折強い温度差が印加されて浮力による強制対流 を生じさせる制御が加わっていることがわか る、4つ渦の指標をみると長時間*I*<0の状態 が持続できており、図5(a)(b)の2つの4つ渦 状態の出現確率の対称性が破れて,図5(b)の4 つ渦パターンのみを安定的に実現できた.常に 一定の熱を加えて流動制御するのではなく,加 熱量をダイナミックに上げることによって,乱 流状態に強く働きかけることができているが, その流動メカニズムの解明が今後の課題として 残る.

本研究で, 粒子の挙動と分離可能性を示すこ とができ, さらに強化学習の枠組みを適用して 流路内の二次流れの熱による動的な制御手法の 道筋も付けることができた. 今度は, 3次元流 路内での, 粒子分離の実装と最適な流動制御手 法をシミュレーションで検討しつつ, 実証実験 へとつなげていきたい.

参考文献

Howard D.W., Lightfoot E.N., Hirschfelder J.O., The hydrodynamic resolution of optical isomers, AIChE Journal, 22 (1976) 794–798.

https://doi.org/10.1002/aic.690220425

- Noorani A., Vinuesa R., Brandt L., Schlatter P., Aspect ratio effect on particle transport in turbulent duct flows, Physics of Fluids, 28 (2016) 115103. https://doi.org/10.1063/1.4966026
- Pinelli A., Uhlmann M., Sekimoto A., Kawahara G., Reynolds number dependence of mean flow structure in square duct turbulence–CORRIGENDUM, Journal of Fluid Mechanics, 653 (2010) 537–537.

https://doi.org/10.1017/s0022112010001849

- Scherer M., Uhlmann M., Kidanemariam A.G., Krayer M., On the role of turbulent large-scale streaks in generating sediment ridges, Journal of Fluid Mechanics, 930 (2021) A11. https://doi.org/10.1017/jfm.2021.891
- Sekimoto A., Kawahara G., Sekiyama K., Uhlmann M., Pinelli A., Turbulence- and buoyancy-driven secondary flow in a horizontal square duct heated from below, Physics of Fluids, 23 (2011) 075103. https://doi.org/10.1063/1.3593462
- Uhlmann M., Pinelli A., Kawahara G., Sekimoto A., Marginally turbulent flow in a square duct, Journal of Fluid Mechanics, 588 (2007) 153–162.

https://doi.org/10.1017/s0022112007007604

Winkler C.M., Rani S.L., Vanka S.P., Preferential concentration of particles in a fully developed turbulent square duct flow, International Journal of Multiphase Flow, 30 (2004) 27–50. https://doi.org/10.1016/j.ijmultiphaseflow.2003.11.003 Winkler C.M., Rani S.L., Vanka S.P., A numerical study of particle wall-deposition in a turbulent square duct flow,

外部発表成果

口頭・ポスター発表

- 三谷 崇志,関本 敦,"壁面加熱による低レ イノルズ数正方形ダクト乱流の4つ渦平均 二次流れの安定化",日本流体力学会年会 2022(京都大学吉田キャンパス,Sep. 27-29, 2022).
- 三谷 崇志,関本 敦,"正方形ダクト中のプ ラントル第二種二次流れの強化学習による 加熱制御",日本流体力学会年会 2023(東 京農工大学小金井キャンパス,Sep. 20–22, 2023).

Powder Technology, 170 (2006) 12–25. https://doi.org/10.1016/j.powtec.2006.08.009

- 三谷 崇志,関本 敦,"分散型強化学習による正方形ダクト乱流中の縦渦の熱的制御", 日本流体力学会第32回中四国九州支部講演会(岡山大学津島キャンパス,Nov. 25-26, 2023).
- 関本 敦,三谷 崇志,"数値流体シミュレーションにおけるデータ駆動型の能動パラメター制御",第37回数値流体力学シンポジウム(名古屋大学東山キャンパス,Dec. 15-17,2023).
- Mitani T., Sekimoto A., "Thermal control of the streamwise vortices in a turbulent square-duct flow by a reinforcement learning", The 6th RCCS international symposium (Jan. 29–30, 2024, Kobe International Conference Center), poster.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 99–102 /https://doi.org/10.14356/hptf.20106r2

HPTF20106

有機無機複合材料の機能性を支配する界面構造設計

Design of Interface between Particle/Polymer Matrix to Improve Their Functionality

研究代表者 Research leader: 高井 千加 Chika TAKAI 岐阜大学工学部 准教授 Faculty of Engineering, Gifu University, Associate Professor E-mail: takai.chika.h3@f.gifu-u.ac.jp

抄 録

ナノ粒子/ポリマー複合フィルムが断熱性,光散乱性など特異的機能を発現するためには,機能に 特化した粒子の設計・ナノスケールにおける分散のみならず,粒子/ポリマー界面の分子レベルで の複合化が重要である.用途に応じポリマー自身も硬化方法も多様化するため,粒子,ポリマー両 者の特性を知る評価手法を提案した.時間領域核磁気共鳴(TD-NMR)は液中分散体表面の物性を 緩和時間として表すことができる.得られた緩和時間変化を,汎用的な評価手法とともに分析した ので報告する.

ABSTRACT

In order to manifest specific functionalities such as thermal insulation and light scattering in nanoparticle/ polymer composite films, it is essential not only to design particles tailored to these functions and achieve dispersion at the nanoscale but also to emphasize the molecular-level integration at the particle/polymer interface. As polymer characteristics and curing methods diversify according to the application, we have proposed an evaluation method to understand the properties of both particles and polymers. Time-domain nuclear magnetic resonance (TD-NMR) can represent the physical properties of the surface of dispersed bodies in liquid through relaxation times. We present a report analyzing the changes in relaxation times obtained, along with a versatile evaluation method.

研究背景と目的

ナノサイズの孔を持つ中空粒子は,中身が詰 まった中実粒子と比べて特異的な機能を持つ. 内部空洞に存在できる空気分子数が,内部空洞 径の減少に伴い減少することに起因すると考え られる. また, 粒子内壁の表面エネルギーの増加により分子が吸着しやすくなり, より空気分子数が減少すると考えられる. これらのことから, ナノサイズ中空粒子は, ミクロンサイズの中空粒子と比べて断熱性が飛躍的に増加すると 推測される.

Copyright © 2024 The Author. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

実際に、ナノシリカ中空粒子をポリウレタン に練りこみ複合フィルムを作製すると、その熱 伝導率はポリウレタンの約 1/10 となり、空気 とほぼ同等の 0.025 W/m・K を示した¹¹¹. 伝熱 シミュレーション結果と併せて考察すると、こ のような低熱伝導率を実現するには、シリカ シェルの微構造が起因していると考えられた.

研究方法

ナノ中空粒子は、炭酸カルシウムをテンプ レートとし、シリカシェルを形成、酸処理によ りテンプレートを除去して得る.シリカシェル 形成時の pH や時間を調整すると、シェルのみ かけ密度が 1.5 ~ 2.2 g/cm³ の範囲で制御でき ることが分かった^[2].これらの中空粒子とポリ ウレタンの複合フィルムの熱伝導率を再度測定 してみると、シェルの密度が低いほど低い熱伝 導率が得られた、内部空洞をナノサイズに設計 するだけでなく、シェル微構造も機能発現に効 いてくることが分かる.

上述の断熱フィルムは, 粒子表面とポリウレ タンの濡れ性を制御する化学的改質を施すこと で, 窓に貼りつけても視認性を妨げない高い可 視光透過性を併せ持つ.一方で,少し凝集させ ると,光散乱性を発現することも分かった.ディ スプレイの発光ダイオード(LED)光源の直進 性を和らげる光拡散フィルムとしての応用が期 待できる^[3].

さらに光散乱性を向上させる試みとして, シェルにマクロ孔を開けたスケルトン粒子を設 計した^[4].これは,一辺が100nm程度のナノ 粒子である.この粒子をポリマーに練りこんだ 複合フィルムはユニークな光散乱性を持つ.そ れは,粒子径やマクロ孔の径だけでなく,シリ カを構成する微構造や粒子分散凝集挙動のよう に,スケールの異なる構造の組み合わせにより 起こる.

上述した粒子の機能性を最大限引き出すため には、粒子構造設計だけでなく、粒子表面とマ トリックスの界面設計が必要である.これまで にマトリックスに対し分子レベルで濡れ性を向 上させる表面処理を施す方法^[5]や,濡れ性向 上に資する表面処理剤の種類や量を予測する手 法^[6]を提案してきた.

濡れ性評価手法は様々あるが,時間領域核磁 気共鳴(TD-NMR)に着目している.溶媒分子 のプロトン緩和時間を見るもので,測定時間が 30秒ほどと非常に短く,粒子形状や粒子濃度, 粘度に依らず測定可能であることが特徴であ る.一方で得られた緩和曲線をどのように解釈 し濡れ性を評価できるか未解明な部分が多い.

粒子分散系には,粒子表面に強く拘束された 溶媒分子と,フリーの溶媒分子が存在する.前 者の緩和時間は短く,後者の緩和時間は長い. つまり,粒子濃度が高くなるほど拘束された溶 媒分子が多くなるため,緩和時間は短くなり, 一次粒子径が小さくなるほど比表面積が大きく なるため緩和時間は短くなる^[7].これを利用す れば,表面改質粒子と分散媒との濡れ性を評価 できる.

TD-NMR を利用できるのは粒子分散系に限 らない. 複合フィルムの機能性を引き出すため に、マトリックスとなるポリマーの構造と機能 の関係も知りたいと考え、セルロースナノファ イバー (CNF) に目を付けた. CNF は、例え ば木材のようにセルロースを含む材料を原料と し、パルプ化を経て機械的または化学的に解繊 して繊維径 100 nm 以下に調整された繊維のこ とを指す. 主に水に分散した粘性のあるゾルと して供給されることが多く、繊維表面はグル コース由来の水酸基が多く露出していることか ら,フィルムや粘度調整材,樹脂補強材など幅 広い用途での活躍が期待される.前述の粒子と 複合化すれば、両者の長所を生かした材料を作 ることができるのではないかと期待している. 水中における CNF の構造は、レオロジー挙動 や繊維径,結晶構造,表面物性など、マイクロ からナノ、分子スケールにおいて総合的に把握 することが必要であると考える^[8].時間の制約 もあることを考えると、これらを考慮した迅速 な測定手法が望まれることも多い. そこで. 時 間領域核磁気共鳴(TD-NMR)を用い,溶媒プ ロトン緩和時間から,繊維表面と溶媒との親和 性を推測することで,CNF構造の把握に取り 組んだ^[9].

研究成果

図1に CNF 水分散液の緩和時間を示す.初 期濃度である 20 wt% は非常に短い緩和時間を 示すが,希釈すると緩和時間が長くなることが 分かる.特に1 wt% を境に緩和時間に急激な 増加がみられた.

CNFの緩和時間が表すのは、繊維間に拘束 された水のプロトンによるものと考えられる. 初期濃度 20 wt% を徐々に希釈していくと、ど こかで三次元網目構造がほぐれ、拘束する水が 減少するはずである.1 wt% 付近に見られた急 激な緩和時間の増加は、希釈によって網目構造 が壊れ、拘束水が減少したことによると推測し た(図 2).

網目構造の変化は、希釈工程によって繊維間の相互作用が消失したことが原因と考え、比粘度を測定すると(図3),1wt%を境に、低粘度では繊維間相互作用の消失が確認された.

また, Turbiscan lab を用い, 希釈した CNF 分散液を数日静置した際の後方散乱スペクトル

Fig. 1 Change in the relaxation time (T_2) as a function of CNF concentration.

を測定すると、1 wt% 付近から細かい繊維に由 来する散乱が得られた.これは、希釈により三 次元網目構造を形成できなくなった繊維による ものと考えられる.

以上のことから,水中の CNF の挙動を緩和 時間変化から推測できることを明らかにした. TD-NMR は測定時間が1分程度と非常に短く, CNF のような高粘度試料を希釈不要で測定で きることが特徴である.未知試料の緩和時間解 釈には汎用分析手法の補助が必要であるが,環 境に敏感に構造変化が起こる CNF の迅速評価 に適していると考える.

CNF をマトリックスとし、ナノ粒子を複合

Fig. 2 Estimated change in the CNF upon dilution.

Fig. 3 Change in the specific viscosity as a function of CNF concentration.

研

化するためには、両者の界面を設計する必要が ある。例えば粒子か CNF,または両者の表面 を化学的に改質したり、機械的に改質したりす ることで複合化を促進することができるだろ う.重要なことは、これらの処理によってどの 程度、両者の表面に適切な効果が表れたかを知 ることである。本報告を基盤とし、化学的改質 剤の種類や改質量、機械的改質の度合いも、緩 和時間変化で表現できることが分かってきてお り、TD-NMRの適用範囲の拡大が期待できる。

参考文献

- Fuji M., Takai C., Watanabe H., Fujimoto K., Improved transparent thermal insulation using nano-spaces, Advanced Powder Technology, 26 (2015) 857–860. https://doi.org/10.1016/j.apt.2015.02.012
- [2] Takai C., Watanabe H., Asai T., Fuji M., Determine apparent shell density for evaluation of hollow silica nanoparticle, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 404 (2012) 101–105. https://doi.org/10.1016/j.colsurfa.2012.04.019
- [3] Takai-Yamashita C., Fuji M., Hollow silica nanoparticles: a tiny pore with big dreams, Advanced Powder Technology, 31 (2020) 804–807. https://doi.org/10.1016/j.apt.2019.11.034
- [4] Takai C., Fuji M., Fujimoto K., Skeletal silica nanopar-

ticles prepared by control of reaction polarity, Chemistry Letters, 40 (2011) 1346–1348.

https://doi.org/10.1246/cl.2011.1346

- [5] Takai C., Fuji M., Takahashi M., A novel surface designed technique to disperse silica nano particle into polymer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292 (2007) 79–82. https://doi.org/10.1016/j.colsurfa.2006.06.007
- [6] Takai-Yamashita C., Nagamine H., Nakashima Y., Bo P., Fuji M., Manipulating the chemical affinity and kinetics of 3D silica particle network via the phase-separation technique, Advanced Powder Technology, 29 (2018) 3062–3069. https://doi.org/10.1016/j.apt.2018.08.004
- [7] Takai-Yamashita C., Sato E., Fuji M., NMR as a tool to characterize the aggregation structure of silica nanoparticles in a liquid, KONA Powder and Particle Journal, 37 (2020) 233–243. https://doi.org/10.14356/kona.2020012
- [8] Takai-Yamashita C., Mabuchi Y., Senna M., Fuji M., Ohya Y., Yamagata Y., Microstructure and surface activity of mechanically-dispersed cellulose nanofiber aqueous sol, Cellulose, 28 (2021) 775–785. https://doi.org/10.1007/s10570-020-03570-3
- [9] Takai-Yamashita C., Ikeda J., Wada Y., Ohya Y., Yamagata Y., Takasaki Y., Fuji M., Senna M., Change in the dispersion states of short-length-cellulose nanofibers upon dilution investigated by a time-domain nuclear magnetic resonance (TD-NMR), Cellulose, 29 (2022) 7049–7062.

https://doi.org/10.1007/s10570-022-04714-3

研

成

外部発表成果

論文発表

 Takai-Yamashita C., Ikeda J., Wada Y., Ohya Y., Yamagata Y., Takasaki Y., Fuji M., Senna M., Change in the dispersion states of short-lengthcellulose nanofibers upon dilution investigated by a time-domain nuclear magnetic resonance (TD-NMR), Cellulose, 29 (2022) 7049–7062. https://doi.org/10.1007/s10570-022-04714-3

口頭・ポスター発表

 <Invited> Takai-Yamashita C., Nagamine H., Fuji M., "Hansen parameter to predict optimum surface modification for particles", Okinawa Colloids 2019 (Okinawa, Nov. 3–8, 2019) S4., http://www.okinawacolloids.jp/

- Takai-Yamashita C., Ikeda J., Wada Y., Yamagata Y., Takasaki Y., Ohya Y., Fuji M., Senna M., "Change in the aqueous states of short-lengthcellulose nanofibers upon dilution", 8th Asian Particle Technology Symposium APT2021 (Osaka, Oct. 11–14, 2021) 1[R7]13.
- 高井千加,和田雄也,大矢豊,池田純子, 山縣義文,高崎祐一,藤正督,仙名保,"時 間領域核磁気共鳴を用いたセルロースナノ ファイバーゾルの分散性評価",第58回粉 体に関する討論会(北海道, Sep. 6-8, 2021).

<https://www.mtrl.kitami-it.ac.jp/~funtai/>

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 103-106 /https://doi.org/10.14356/hptf.21114

HPTF21114

光触媒特性を示す酸化鉄の分子状ナノ粒子合成

Synthesis of Nano-Scale Molecular Iron Oxides as Photo-Catalyst for Molecular Transformations

研

究

助

成

研究代表者 Research leader: 劒

隼人 Hayato TSURUGI

大阪大学大学院基礎工学研究科 准教授 Graduate School of Engineering Science, Osaka University, Associate Professor E-mail: tsurugi.hayato.es@osaka-u.ac.jp

抄 録

複数の金属イオンと架橋元素から構成される多核金属錯体は、ナノスケールの無機材料として、そ の合成法の開発と触媒や材料としての応用に関する研究が盛んに行われている。中でも複数の鉄イ オンと架橋オキソ配位子を含む多核鉄錯体は、ナノスケールオーダーとした酸化鉄のナノ粒子であ り、その触媒特性や磁性などの諸性質に注目が集まっている。本研究では、3 価の鉄錯体に対して 紫色~青色光を照射すると、鉄周囲の配位子が解離して光還元が進行する性質を活用し、様々な核 数の多核鉄錯体を与える反応条件下でのカルボン酸の変換に関わる光触媒特性を見出した。特に鉄 塩とカルボン酸から生じるカルボキシラート配位子を有するオキソ架橋多核鉄錯体が光触媒反応に おける触媒活性種となり、光照射によりカルボン酸が脱炭酸を起こし、生じる有機ラジカルが不飽 和炭化水素に対して付加反応を起こすことで、新たな有機合成反応に展開できることを明らかにし た。

ABSTRACT

Multi-nuclear metal complexes containing multiple metal ions and their bridging elements are recognized as nanoscale inorganic materials, and their synthesis and application as catalysts and materials have been extensively investigated. Among the multi-nuclear metal complexes, oxo-bridged iron complexes have attracted much attention because of their unique physical and chemical characteristics such as their catalytic performance and magnetic properties. In this research, we discovered the photocatalytic performance of the conversion of carboxylic acids under visible light irradiation, in which multi-nuclear iron complexes are formed upon reaction with carboxylic acids and photoreduction of the trivalent iron center proceeds by dissociating the carboxylate ligands around the iron center. In this photocatalytic reaction, carboxylate radicals are generated after photoirradiation, and subsequent decarboxylation forms organic radicals in the reaction mixture. Subsequent radical addition to unsaturated organic compounds affords the decarboxylative functionalization products.

研究背景と目的

多核金属錯体とは、有限の大きさの中で金属 イオンの数や種類.相対的な空間配置が自在に 制御されたナノ粒子と捉えることができ、単一 な構造として合成・単離することが可能な物質 群である.このように複数の金属イオンを含み、 その金属イオンが精密に配置された多核金属錯 体に関して、金属間に働く電子相関やスピン相 関が特異な発光特性や磁気特性の発現に大きく 影響を与えることが錯体化学の分野において見 出されている. 中でも架橋オキソ配位子と鉄イ オンから成る多核鉄錯体は、最も身近な金属酸 化物である酸化鉄の分子状ナノ粒子であり、磁 気的な性質のみならず、触媒としても様々な用 途開発が進んでおり、均一系触媒と不均一系触 媒の境界領域にある触媒としても注目が集まっ ている.

入手容易で安全な金属元素を用いる触媒開発 に関する近年の研究において、安価な金属であ る鉄とエネルギー源としての可視光の組み合わ せが,穏やかな条件下で様々な有機合成反応を 促進するための触媒系として注目を集めている [1],[2]. 天然に豊富に存在するカルボン酸は化石 燃料に依存しない炭素資源として有用であり, 近年, 有機合成原料としてカルボン酸を活用す る方法として、脱炭酸反応により生じる有機フ ラグメントを用いる反応開発が進められてき た^{[3],[4]}.われわれは最近、架橋オキソ配位子と セリウムイオンから成る多核セリウム錯体が. 青色 LED 光の照射下でカルボン酸の脱炭酸官 能基化反応の触媒となることを見出し、分子状 の酸化物ナノ粒子としての触媒機能を新たに報 告した^{[5],[6]}.本研究の目的は、光触媒機能を発 現する酸化鉄ナノ粒子の活用に向けた. 多核鉄 錯体の合成と触媒的な利用法を開発することに ある. その結果, 金属酸化物を分子状ナノ粒子 化することで得られる特有の触媒機能の開拓と して、カルボン酸の脱炭酸アルキル化反応を見 出すに至った.

研究方法

試薬会社より市販されている一連の鉄塩を触 媒として実験を行った.反応に用いる溶媒は所 定量を試験管にとり、セプタムキャップを付け た後にアルゴンガスで10分程度バブリングを 行うことで脱気処理を行った、また、基質であ るカルボン酸やアルケンは、試薬会社から購入 後、特に精製を行うことなく、そのまま反応に 用いた. なお, 光源としては Kessil 社製 LED 光 (紫色: PR160L 390 nm LED (max 52 W), 青色: PR160L 427 nm LED (max 45 W)) を使 用した(図1).小型の扇風機で反応中の試験 管を冷却し、反応溶液を室温に保った. 触媒反 応後,反応溶液を少量採取し,重水素化溶媒で 希釈したのちに NMR 測定をすることで収率を 算出した.また、最終的に得られる化合物は溶 媒を留去した後にシリカゲルクロマトグラ フィーを行うことで単離精製している. なお, 光源と試験管の距離が異なる場合には実験結果 の再現性に乏しい結果となり、実際に試験管表 面にあたる光量が反応の進行に大きく影響を与 えることが分かる.

Fig. 1 Reaction set-up for photo-catalytic decarboxylative alkylation of carboxylic acids with electron-deficient alkenes.

研
研究成果

1. 鉄錯体のスクリーニング

最適な鉄錯体を見出すためのスクリーニング として、市販で入手容易な種々の鉄塩を用いて 反応を行った.この際、反応のモデル基質とし て 4-fluorophenylacetic acid (1) お よ び benzylidenemalononitrile (2)を用いて紫色光照射 下において光触媒反応を行ったところ、鉄塩を 触媒とした場合に、高収率で脱炭酸-アルキル 化生成物 3 が得られることが分かった.特に、 金属酸化物の最小単位の構造と言える金属クラ スター錯体が反応中で生じる鉄塩が最適であ る.なお、酢酸鉄やアセチルアセトナート配位 子を有する鉄錯体を用いた際には、反応収率は 中程度に留まる結果となった.

2. 鉄多核錯体を用いる特徴的な反応:フェ ノール性水酸基を有するカルボン酸の利用

可視光照射下でのカルボン酸の脱炭酸アルキ ル化反応は、いくつかの鉄触媒がこれまでにも 報告されている. 前述の今回見出した鉄クラス ター錯体を用いる反応の特徴を見出すべく、従 来の鉄触媒系では収率の低い、いくつかのカル ボン酸基質のスクリーニングを行った. その結 果. フェノール性水酸基を有するカルボン酸を 基質として用いると、そのフェノール部位の酸 化反応が併発するため,反応収率が低下するこ とが分かった. その原因の一つが鉄触媒系に必 須である可視光の波長域にあり、紫色 LED 光 を用いると、その光エネルギーそのものが強い こともフェノール部位の酸化反応が引き起こさ れる一因となる.一方,よりエネルギーの小さ な青色 LED 光を用いても反応は進行するが, 収率は中程度に留まった. そこで、収率の改善 につながる添加剤を検討し,含窒素芳香族化合 物を添加することにより,青色 LED 光の照射 下においても収率が大幅に向上することを見出 した. これらの窒素を含む芳香族化合物は鉄中 心に強く配位する性質があることが知られてい る. 従って、前述の三核鉄錯体に対して窒素原

子が配位し,鉄周りの電子状態が変化すること で,青色 LED 光であってもカルボン酸の脱炭 酸変換が進行するためのカルボキシラジカル生 成が効率よく進行したと考えられる.

3. カルボキシラート配位子を有する鉄多核 錯体の合成

上述の鉄錯体を用いる光触媒反応では、3価 の鉄中心を含む鉄多核錯体が形成し、光照射に より還元されることでカルボキシラジカルが生 成し、その後の脱炭酸変換が進行する、触媒反 応が進行するためには、反応中に生じる2価の 鉄中心が再酸化される過程が含まれる.そこで、 市販の2価の鉄を含む種々の鉄塩に対して有機 溶媒中で酸化剤として作用する (Me₃SiO)。を加 えて鉄多核錯体の合成検討を行った.その結果, カルボキシラート配位子を有する市販の2価の 鉄塩である Fe(OAc)っに対して (Me₃SiO)っ を加 えたところ,鉄中心の酸化反応とともに架橋オ キソ配位子が形成することで多核化が進行した 鉄11核錯体が選択的に得られることが分かっ た(図2). この反応は、カルボキシラート配 位子を有する2価の鉄塩が酸化されることで多 核構造が形成されることを示しており、今回見 出した光触媒反応の触媒反応溶液中でも、この ような酸化物ナノ粒子ともいえる鉄多核錯体の 形成が酸化還元の進行とともに起きていること を示唆している.

4. まとめ

本研究では,鉄酸化物ナノ粒子とみなすこと ができる鉄多核錯体が生成する反応条件下,光 エネルギーを活用するカルボン酸の脱炭酸変換 を検討し,特にフェノール性水酸基を有するカ ルボン酸にも適用可能な,ユニークな光触媒反 応系を見出した.このような反応系において生 成する鉄多核錯体の構造と触媒活性の相関は未 だ明らかになっておらず,多核構造に含まれる 鉄の核数等の影響が触媒としての特徴にどのよ うに反映されるか,に関してさらなる研究の進 展が待たれる.

Fig. 2 Formation of Oxo-bridged Fe₁₁ cluster by oxidation of Fe(OCOMe)₂ with (Me₃SiO)₂.

参考文献

- de Groot L.H.M., Ilic A., Schwarz J., Wärnmark K., Iron photoredox catalysis–past, present, and future, Journal of the American Chemical Society, 145 (2023) 9369– 9388. https://doi.org/10.1021/jacs.3c01000
- [2] Dierks P., Vukadinovic Y., Bauer M., Photoactive iron complexes: more sustainable, but still a challenge, Inorganic Chemistry Frontiers, 9 (2022) 206–220. https://doi.org/10.1039/D1QI01112J
- [3] Gavelle S., Innocent M., Aubineau T., Guérinot A., Photoinduced ligand-to-metal charge transfer of carboxylates: decarboxylative functionalizations, lactonizations, and rearrangements, Advanced Synthesis & Catalysis, 364 (2022) 4189–4230. https://doi.org/10.1002/adsc.202201149
- [4] Crespi S., Fagnoni M., Generation of alkyl radicals:

from the tyranny of tin to the photon democracy, Chemical Reviews, 120 (2020) 9790–9833.

https://doi.org/10.1021/acs.chemrev.0c00278

[5] Shirase S., Tamaki S., Shinohara K., Hirosawa K., Tsurugi H., Satoh T., Mashima K., Cerium(IV) carboxylate photocatalyst for catalytic radical formation from carboxylic acids: decarboxylative oxygenation of aliphatic carboxylic acids and lactonization of aromatic carboxylic acids, Journal of the American Chemical Society, 142 (2020) 5668–5675.

https://doi.org/10.1021/jacs.9b12918

[6] Kawakami T., Tamaki S., Shirase S., Tsurugi H., Mashima K., Syntheses and redox properties of carboxylate-ligated hexanuclear Ce(IV) clusters and their photoinduced homolysis of the Ce(IV)–ligand covalent bond, Inorganic Chemistry, 61 (2022) 20461– 20471. https://doi.org/10.1021/acs.inorgchem.2c03163

外部発表成果

口頭・ポスター発表

- 長井友花,玉木颯太,劒隼人,"鉄錯体を 触媒とする可視光照射下での脂肪族カルボ ン酸の脱炭酸アルキル化反応",錯体化学会 第73回討論会(水戸市民会館,Sep. 21–23, 2023)ポスター発表.
- 2. 玉木 颯太, 草本 哲郎, 劒 隼人, Decarboxyl-

ative Functionalization of Carboxylic Acids with Easily Oxidizable Functional Groups Catalyzed by Iron Complexes under Photo-irradiation, 日 本化学会第 104 春季年会(日本大学, Mar. 18–21, 2024) 口頭発表.

3. 長井 友花, 草本 哲郎, 劒 隼人, 鉄錯体を 光触媒とする酸化剤存在下での脂肪族カル ボン酸の脱炭酸アルキル化反応, 日本化学 会第 104 春季年会(日本大学, Mar. 18–21, 2024) 口頭発表.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 107-111 /https://doi.org/10.14356/hptf.21115

HPTF21115

ナノ粒子完全無溶媒精密合成を可能とする金属錯体開発

Development of Alkylamine-Coordinate Self-Reducible Metal Complex for Tailor-Made and Solventless Synthesis of Inorganic Nanoparticle

研究代表者 Research leader:

冨樫

貴成 Takanari TOGASHI

山形大学理学部 准教授 Faculty of Science, Yamagata University, Associate Professor E-mail: togashi@sci.kj.yamagata-u.ac.jp

抄 録

有機分子により被覆された無機ナノ粒子はサイズ・形状に依存したユニークな物性を発現する. さらに,溶媒に分散可能であり,医療・工学的用途が多数報告されている. これまで,サイズ制御は 金属イオン濃度が希薄な液相法で行われている. 結果,ナノ粒子合成量の増加に伴い廃液量が増加 し,環境面の課題が残る.現在,我々はアルキルアミン融合シュウ酸錯体を原料として用いたナノ 粒子合成法を研究している. この手法では,溶媒を用いることなく,少量の配位子中でサイズが均 ーな単分散ナノ粒子の合成・予測可能なサイズ制御までも可能としている. その一方で,合成実績 は少なく,汎用性の向上には新たな金属種での錯体の合成が必須である.本研究では,新たにニッ ケル,コバルト,スズ,バナジウムを金属イオンにもつアルキルアミン融合シュウ酸錯体の合成を 試みた. 得られた金属錯体の構造・物性は X 線回折,赤外分光法,熱重量測定装置により評価した.

ABSTRACT

The properties of inorganic nanoparticles (NPs) are controlled by their size. Therefore, controlling the size of NPs is a fundamental technique in nanoscience. However, the size-tunable synthesis of inorganic NPs is generally carried out in a dilute solution, which produces a large amount of waste. Previously, we have reported the solvent-less synthesis of inorganic nanoparticles via thermal decomposition of an alkylamine-coordinated metal oxalate complex. As a result, the waste produced after the synthesis of nanoparticles drastically decreased. In addition, the size of inorganic nanoparticles can be predictably controlled via stepwise thermal decomposition of metal oxalate. However, species of alkylamine coordinated metal oxalate complex are few (Fe, Cu, and Ag). Here, a new type of alkylamine coordinated metal oxalate complexes was synthesized using other metal ions. The properties of the synthesized alkylamine coordinated metal oxalate complexes were measured using X-ray diffraction, Fourier transform infrared spectrum, thermogravimetric analysis, and other techniques.

研究背景と目的

有機分子により被覆された無機ナノ粒子は, 特異な磁気・光学・電気化学など形状・サイズ に依存した物性に加え,多様な溶媒に分散可能 である.これら特性により,触媒,磁性流体, 薬剤・診断プローブ,エネルギー変換・貯蔵, 導電性インクなど多岐にわたる用途が提案・開 発されており,年々その需要は高まっている (Chen et al., 2018; Kolhatkar et al., 2013; Matter et al., 2020; Nie et al., 2020; Ray 2010; Silvera Batista et al., 2015; Trindell et al., 2020; Xia et al., 2009).

これら、形状・サイズ制御されたナノ粒子の 合成は、ゾル-ゲル法、ソルボサーマル法、逆 ミセル、水熱合成法など液相法を中心に行われ てきた. これら手法により,単分散かつサイズ・ 形状が制御されたナノ粒子の合成が多数報告さ れ、前述したサイズ・形状と物性の関係を明ら かにしてきた、一方で、それらの多くは、配位 子・金属イオン濃度や種類、反応温度、pH, 還元剤種など数多くの反応パラメーターの変化 により達成される半経験なものであり、サイズ を精密に予測した制御は未だ困難である (Bastús et al., 2014; Gan et al., 2016; Halimi et al., 2019; Li et al., 2013; Suchomel et al., 2018; Tang et al., 2014). さらに、液相法では金属イオン濃度 が非常に低い、そのため、ナノ粒子の生産量の 増加と共に、排出される廃液量も増加し、その 環境負荷も課題である.

近年,我々は自己還元型錯体であるシュウ酸 錯体にアルキルアミンを配位させた,アルキル アミン融合シュウ酸錯体を原料とした無溶媒ナ ノ粒子合成法を研究している.

古典的配位高分子であるシュウ酸錯体は,あ らゆる溶媒に不溶,さらに高い格子エネルギー から熱的に安定な化合物であり,これまでナノ 粒子合成における原料として利用されていな かった.対して,シュウ酸塩は式(1)のように 熱分解し,熱分解後は純粋な金属または金属酸 化物が合成される特徴を有する(Vijh, 1988).

Fig. 1 The formation of alkylamine-coordinated oxalate complex via mixing oxalate complex and alkylamine.

 $M_n(C_2O_4)_m \rightarrow nM + 2mCO_2 \tag{1}$

我々は、シュウ酸錯体にアルキルアミンを混 合・配位させると、シュウ酸による金属イオン の架橋が解放された単核錯体が合成されること を見いだした(図1)(Togashi et al., 2017).

配位子・溶媒と混和可能となるのみならず, アルキルアミンの柔軟性より低温で加熱するこ とにより,金属錯体自身が融解し液相のように 振る舞い,完全無溶媒条件でのナノ粒子合成を 可能とする(Togashi et al., 2017). さらに,得 られた錯体は,配位高分子構造から解放され, シュウ酸部位の分解温度が劇的に低下する.こ れにより,急速熱分解を可能とし単分散ナノ粒 子合成に有用な原料となる.

さらに式(1)に示したように、シュウ酸錯体 の熱分解後はカウンターイオンであるシュウ酸 イオンが二酸化炭素として系外に排出される. そのため、通常の金属塩では避けられない、ナ ノ粒子合成後のカウンターイオンの蓄積が0と なる.結果、反応前後で反応場組成が変化しな いため、定常的に臨界濃度・結晶成長速度が変 化せず、シュウ酸部位の逐次添加・分解により 無溶媒条件での予測可能なサイズ制御までを可 能とした(Togashi et al., 2017; 2018; 2020).

これまで,鉄(Fe),銅(Cu),銀(Ag),か らなるアルキルアミン融合シュウ酸錯体を合成 し,単分散ナノ粒子の無溶媒合成・サイズ制御 によるナノ粒子の物性制御を可能とした (Togashi et al., 2018, 2020; Nozawa et al., 2021). その一方で,適応可能な金属元素は限定されて おり,未だ汎用性の高い合成法とは言えない. 研

究

助

成

そこで本研究では、本手法の汎用性向上を目指 し、他種の金属元素を有するアルキルアミン融 合シュウ酸錯体の合成及びその評価を行った.

<u>研究方法</u>

1. オレイルアミン融合シュウ酸錯体の合成

シュウ酸ニッケル(三ツ和化学)37.5 mmolに, オレイルアミン(Sigma Aldrich)41.3 g(150 mmol), メタノール(東京化成)15 ml, 蒸留水30 ml をそれぞれ加え,環流条件で約2日間撹拌した. 吸引ろ過により固体生成物を回収後,メタノー ルと1-プロパノールにより洗浄した後,減圧 乾燥した.結晶構造は粉末X線回折(XRD: RIGAKU Miniflex600),赤外分光法(FTIR: iS-5 Thermo Fisher)および熱分析により評価した. 同様の手法により他のオレイルアミン融合シュ ウ酸錯体を合成した.

研究成果

1. 各種オレイルアミン融合シュウ酸錯体の 評価

図2には、得られた各種オレイルアミン融合 シュウ酸錯体のXRDパターンを示す.得られ た各種錯体からは回折ピークが確認されてお り,結晶性の金属錯体だとわかる(赤色).また、 得られた回折パターンは原料として用いたシュ ウ酸錯体のパターン(青色)とは全く異なって いることからもアルキルアミンとシュウ酸錯体 が融合し,結晶構造が変化したことが示された.

図3には、得られた各種オレイルアミン融合 シュウ酸錯体のFTIRスペクトルを示す.いず れの金属錯体もアルキルアミン融合シュウ酸錯 体の合成を示す変化が確認された.まず、一つ 目がアルキルアミン融合シュウ酸錯体のスペク トル中には2800-2900 cm⁻¹付近に C-H 伸縮振 動に帰属されるピークが新たに確認された.こ れは、アルキルアミンのアルキル鎖に由来する ピークである.次に1600 cm⁻¹付近の COO⁻の 非対称伸縮振動に帰属されるピークが、原料の

Fig. 2 XRD patterns of oxalate complex(blue) and oleylamine-coordinated oxalate complex(red).

Fig. 3 FTIR spectra of oxalate complex(blue) and oleylamine-coordinated oxalate complex(red).

シュウ酸塩ではブロードなのに対して、オレイ ルアミン融合シュウ酸錯体ではシャープなピー クへと変化した.これは、シュウ酸錯体中のバ ルクな配位ネットワーク構造が、オレイルアミ ンの融合により分子性になったことに由来す る.しかし、この変化は Co、Ni では観察され

Fig. 4 Result of TGDTA mesurements of oxalate complex(blue) and oleylamine-coordinated oxalate complex(red).

たが、V, Sn ではその変化が観察されなかった. よってオレイルアミン融合シュウ酸 V, Sn の 合成法に再度検討する必要があることを示す. また、オレイルアミン融合シュウ酸 Co, Ni 錯 体では、3300 cm⁻¹ に N-H 伸縮振動に帰属され るピークが確認され、その位置もオレイルアミ ン (3328 cm⁻¹)よりも低周波数側に確認された. これは、NH₂基が金属に配位結合していること を示す. (Xu and Wang, 2017)

図4にTGDTAの結果を示す. Co, Ni, Sn の場合,原料のシュウ酸錯体では,一段階目の 重量減は結晶水の脱離に帰属され、シュウ酸部 位分解温度は二段階目の重量減の温度であり約 400°C程度だった.オレイルアミン融合シュウ 酸錯体も二段階の重量減が観察されるが,一段 階目がシュウ酸部位の重量減であり,二段階目 がオレイルアミンの分解・蒸発に伴う重量減で ある.シュウ酸部位に着目すると、オレイルア ミン融合シュウ酸錯体の形成より、その分解温 度は200°C以下まで低下していた.これにより, 急速熱分解により単分散ナノ粒子合成の原料と なる金属錯体が合成できた.一方,V錯体では、 原料の分解温度からの低下は確認されなかっ た. そのため、合成法の再検討が必要である.

本研究では、我々が研究している無溶媒合成 法へ利用可能な各種金属のオレイルアミン融合 シュウ酸錯体の合成を試みた、その結果、これ まで合成されてきた Fe と Cu の間にある Ni, Co の金属錯体では、これまでと同様の手法に よりオレイルアミン融合シュウ酸錯体の合成で き、今後これら金属錯体を原料に無溶媒合成・ 精密サイズ制御へと展開できる、一方で、Sn, V のオレイルアミン融合シュウ酸錯体について は FTIR、TGDTA でこれまでのオレイルアミン 融合シュウ酸錯体とは異なる挙動が観察され、 合成法の再検討が必要である.

その他に、シュウ酸錯体とは異なる自己還元 型金属塩であるギ酸錯体へアミン配位子を配位 させて合成したアミン配位ギ酸錯体について、 アミン配位子により、その分解温度を制御する ことに成功した.また、分解温度の制御因子ま でを明らかとした.これら成果については現在、 論文投稿中である.

参考文献

- Bastús N.G., Merkoçi F., Piella J., Puntes V., Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties, Chemistry of Materials, 26 (2014) 2836–2846. https://doi.org/10.1021/cm500316k
- Chen Y., Fan Z., Zhang Z., Niu W., Li C., Yang N., Chen B., Zhang H., Two-dimensional metal nanomaterials: synthesis, properties, and applications, Chemical Reviews, 118 (2018) 6409–6455.

https://doi.org/10.1021/acs.chemrev.7b00727

- Gan L., Rudi S., Cui C., Heggen M., Strasser P., Sizecontrolled synthesis of sub-10 nm PtNi₃ alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis, Small, 12 (2016) 3189–3196. https://doi.org/10.1002/smll.201600027
- Halimi I., Rodrigues E.M., Maurizio S.L., Sun H.-Q.T., Grewal M., Boase E.M., Liu N., Marin R., Hemmer E., Pick your precursor! Tailoring the size and crystal phase of microwave-synthesized sub-10 nm upconverting nanoparticles, Journal of Materials Chemistry C, 7 (2019) 15364–15374.

https://doi.org/10.1039/c9tc04817k

- Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee T.R., Tuning the magnetic properties of nanoparticles, International Journal of Molecular Sciences, 14 (2013) 15977–16009. https://doi.org/10.3390/ijms140815977
- Li H., Xia H., Wang D., Tao X., Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water, Langmuir, 29 (2013) 5074–5079. https://doi.org/10.1021/la400214x
- Matter F., Luna A.L., Niederberger M., From colloidal dispersions to aerogels: how to master nanoparticle gelation, Nano Today, 30 (2020) 100827. https://doi.org/10.1016/j.nantod.2019.100827
- Nie Z., Petukhova A., Kumacheva E., Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nature Nanotechnology, 5 (2010) 15–25. https://doi.org/10.1038/nnano.2009.453
- Nozawa R., Naka T., Kurihara M., Togashi T., Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(ii) oxalate, Dalton Transactions, 50 (2021) 16021–16029. https://doi.org/10.1039/d1dt02953c
- Ray P.C., Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing, Chemical Reviews, 110 (2010) 5332–5365.

https://doi.org/10.1021/cr900335q

- Silvera Batista C.A., Larson R.G., Kotov N.A., Nonadditivity of nanoparticle interactions, Science, 350 (2015) 1242477. https://doi.org/10.1126/science.1242477
- Suchomel P., Kvitek L., Prucek R., Panacek A., Halder A., Vajda S., Zboril R., Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity, Scientific Reports, 8 (2018) 4589. https://doi.org/10.1038/s41598-018-22976-5
- Tang Y., He W., Wang S., Tao Z., Cheng L., New insight into the size-controlled synthesis of silver nanoparticles and its superiority in room temperature sintering, CrystEng-

外部発表成果

論文発表

1. Kurosawa K., Kanomata W., Konno S., Seong

Comm, 16 (2014) 4431–4440. https://doi.org/10.1039/c3ce42439a

- Togashi T., Nakayama M., Miyake R., Uruma K., Kanaizuka K., Kurihara M., N,N-Diethyl-diaminopropanecopper(ii) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals, Dalton Transactions, 46 (2017) 12487–12493. https://doi.org/10.1039/c7dt02510f
- Togashi T., Nakayama M., Hashimoto A., Ishizaki M., Kanaizuka K., Kurihara M., Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex, Dalton Transactions, 47 (2018) 5342–5347. https://doi.org/10.1039/c8dt00345a
- Togashi T., Tsuchida K., Soma S., Nozawa R., Matsui J., Kanaizuka K., Kurihara M., Size-tunable continuousseed-mediated growth of silver nanoparticles in alkylamine mixture via the stepwise thermal decomposition of silver oxalate, Chemistry of Materials, 32 (2020) 9363–9370.

https://doi.org/10.1021/acs.chemmater.0c03303

- Trindell J.A., Duan Z., Henkelman G., Crooks R.M., Welldefined nanoparticle electrocatalysts for the refinement of theory, Chemical Reviews, 120 (2020) 814–850. https://doi.org/10.1021/acs.chemrev.9b00246
- Vijh A.K., The thermodynamic basis of the spectrum of thermal decomposition products of metal oxalates, Journal of Materials Science Letters, 7 (1988) 513–514. https://doi.org/10.1007/bf01730710
- Xia Y., Xiong Y., Lim B., Skrabalak S.E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angewandte Chemie International Edition, 48 (2009) 60–103. https://doi.org/10.1002/anie.200802248
- Xu W., Wang T., Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films, Langmuir, 33 (2017) 82–90.

https://doi.org/10.1021/acs.langmuir.6b03668

G., Kondo S., Adschiri T., Togashi T., Relationship of thermal decomposition temperature and formate ion structure in amine ligands-coordinated copper formate complex, to be submitted.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 112–116 /https://doi.org/10.14356/hptf.21116

HPTF21116

光照射で酵素の活性を向上するスキャフォールド粉体の開発

A Photo-Responsible Enzyme Activation Design with Photothermal Conversion Device

研究代表者 Research leader: 中澤 光 Hikaru NAKAZAWA 東北大学大学院工学研究科 准教授 Graduate School of Engineering, Tohoku University, Associate Professor E-mail: hikaru@tohoku.ac.jp

抄 録

バイオリファイナリー社会を実現するためには、結晶構造を有する難分解な植物セルロースを、有 用物質生産の起点となるグルコースへと酵素によって変換する必要がある.しかし、変換効率が低 いため、酵素反応槽へ外部から加熱するなどのエネルギーの大量投入を余儀なくされている.筆者 は、難分解性の物質であっても、エネルギー生産するために、エネルギーを投じることはナンセン スであると考えており、時間をかけても、極力追加のエネルギーの投入なく、かつ環境負荷の低い 方法を考えていくことが必要であると考える.本研究では、太陽光を熱に変換する性質を持つ星形 金ナノ粒子の表面へ,独自の酵素クラスター化設計を反映させつつ耐熱性のセルロース分解酵素(セ ルラーゼ)を固定化することで、太陽光により、光応答的に粒子表面の局所反応場の温度を向上さ せ、ボイラーを使わずに効率のよい酵素糖化を達成する方法を開発した.

ABSTRACT

In order to realize a biorefinery society, it is necessary to convert cellulose, which has a crystalline structure and is difficult to decompose, into glucose, which is the starting point for producing useful substances. However, this strategy requires a large amount of energy to be invested because materials are difficult to decompose. Therefore, it is nonsense to invest energy in order to produce energy. It is necessary to consider methods with a low load. In this research, we will reflect a unique enzyme clustering design on the surface of starshaped gold nanoparticles, which have the property of converting sunlight (natural light) into heat. By immobilizing heat-stable cellulase, we have developed a method to improve the local temperature of only the enzyme-reaction field in a photoresponsive manner and improve the efficiency of enzymatic saccharification without using a boiler.

研究背景と目的

有限な化石資源から脱却し、再生可能かつ世 界で最も豊富な非可食系セルロース系バイオマ スから燃料エネルギー, 食品, 医薬品, プラス チック製品等の有用物質へと変換するバイオリ ファイナリー社会を実現するためには、結晶構 造を有し, 難分解なセルロースを一度, 有用物 質生産の起点となるグルコースへと変換する必 要がある.この変換過程は今後酵素(セルラー ゼ)を用いた加水分解反応が採用されると考え られているが、固液反応であるため一般に効率 が悪く、ボイラーにより反応槽の加熱をして大 量のエネルギーを投入し、反応槽全体を酵素の 最適温度にしている. 化石資源を代替しエネル ギー生産することを考慮すると, 難分解性の物 質であっても分解にエネルギーを投じることは ナンセンスであり、極力エネルギー効率がよく、 コストのかからない方法を考えていくことが必 要である. その観点から, 現在の工程を見返す と、前処理したのちにセルロース・ヘミセルロー スは糖化反応を経て単糖となり、有用物質へと 発酵される. そして残渣リグニンは乾燥させて 糖化反応槽のボイラー燃料としている。リグニ ンはフェニルプロパン骨格を持つ分子がヘテロ にラジカル重合した木材の成分であるが、 複雑 かつ一様でない性状から, 有効利用法の開発が 遅れていたが、現在ではポリヒドロキシアルカ ン酸(PHA)などのプラスチックへの有効利用 法が見出だされている. そこで申請者は. リグ

ニンを含むバイオマス原料すべての有効利用を 視野に入れ、リグニンを燃料とするボイラーの 代わりに無限に供給されるエネルギーである太 陽光を糖化システムに利用するエコ炭素循環シ ステム(図1)を発想した.

我々のグループはこれまでに高活性セルラー ゼの開発を行ってきた (Kim et al., 2012; Nakazawa et al., 2009, 2012, 2013). 現在, 最も 高比活性なセルラーゼとして知られる酵素複合 体(セルロソーム)の構造を参考にすることで 酵素活性の向上が期待できると考え、無機ナノ 粒子表面にモジュール化したセルラーゼを提示 したハイブリッド・ナノセルロソームを作製し, 劇的な酵素活性の向上に成功している(Kim et al., 2012; Nakazawa et al., 2013). そのような中, HEPES Buffer の存在下で容易に金粒子に突起 を生長させることができ、生成された星型粒子 は800 nm 付近の近赤外の吸収を持つことが報 告された (Xie et al., 2007). このことは太陽光 を熱に変換できることを意味し、申請者のナノ 粒子への酵素クラスター化技術と組み合わせる ことで、ナノ粒子表面のみでの光応答的な酵素 活性化が可能となる.本研究では、太陽光を熱 に変換する性質を持つ星形金ナノ粒子へ、この 酵素クラスター化設計を反映させ、太陽光応答 的に局所反応温度向上させることによる酵素活 性化を試みた(図2).

Fig. 1 Eco-carbon cycle system in this study.

Fig. 2 Photothermal artificial cellulosome.

研

究

助

研究方法

1. 星形金ナノ粒子の作製

終濃度 0.01–0.5 M HEPES buffer と 0.1–0.5 mM テトラクロロ金 (III) 酸を混ぜ合わせ静置する ことで金のナノ粒子合成を行った. このなかで, 赤,緑,黒の粒子を選択し,電子顕微鏡にて観 察した. 作製した粒子に近赤外光を照射し温度 応答を観察した.

2. 光-熱応答星形人工ハイブリッド・セル ロソーム構築

粒子表面に提示する酵素には 100℃でも失活しない海底火山から単離された耐熱エンドグルカナーゼである *P. horikosii* 由来の EGPH を選び,N末端に PelB シグナルペプチド,C末端に剛直な IgA ヒンジリンカーを介した 6xHis タグを遺伝子工学的に融合した構築物を大腸菌にて発現させた.作製した EGPH 遺伝子を大腸菌により発現させたのち固定化金属アフィニティークロマトグラフィーおよびサイズ排除クロマトグラフィーにより単一まで精製した. EGPH についている 6xHis タグの金属結合能を利用して,前節で作製した金粒子と常温(15-25℃程度)にて1時間程度静置することによって金ナノ粒子表面上に酵素を提示した.金ナノ 粒子の形状が星形を採用した構造を光-熱応答 星形人工ハイブリッド・セルロソームとして実 験に利用した.(図3)

3. 酵素活性評価

光-熱応答星形人工ハイブリッド・ナノセル ロソーム化することによって星形金粒子表面局 所的な温度上昇とそれに伴う酵素活性の変化を 調べた.活性測定の指標はリン酸膨潤セルロー スの加水分解における還元糖生産量 mg/mL を テトラゾリウムブルー法により計測した調べ た.反応条件は一般にバイオマス分解で行われ る pH 5.0 の酢酸緩衝液にて 50℃で行った.

研究成果

光-熱応人工ハイブリッド・セルロソームの作製

光-熱応答人工ハイブリッド・セルロソーム を作製するために HEPES buffer と金イオンを 様々な濃度で混合した結果,様々な色を示す粒 子を合成できた.このなかで,赤,緑,黒の粒 子を選択し,走査型電子顕微鏡にて観察した結 果(図4),緑,黒色の粒子で突起の成長した 金ナノ粒子(星形金ナノ粒子)の作成に成功し ていた.突起の長い黒色粒子のプラズモン吸収

EGPh From Pyrococcus horikoshii OT3^T

Fig. 3 Construction of recombinant EGPh.

究助成

研

を調べたところ,800 nm 付近の近赤外の領域 の光を吸収することが明らかとなった.そこで, 近赤外光をレーザー照射し,その温度変化を調 べたところ,通常の金ナノ粒子に比較してより 効率よく水温の上昇を達成した.酵素には 100°Cでも失活しない海底火山から単離された 耐熱酵素である P. horikosii 由来の EGPH を用 いて,提示は従来の酵素高密度クラスター化設 計(酵素の触媒部位が外側に向くように剛直な リンカーにより粒子上に固定)を用いて His タ グを用いて金ナノ粒子との結合相互作用によっ て行った.これを光-熱変換星型人工セルロ ソームとした.

2. 光-熱応答人工ハイブリッド・セルロソー ムの評価

実際に光応答星型金ナノ粒子へセルラーゼ提示状態で近赤外光照射によってナノ粒子表面が 温められて反応液の水温が上昇していること, および,それに伴って酵素活性が向上している

Fig. 5 Cellulase activity of photo thermal artificial cellulosome by Nia infrared ray irradiation.

Fig. 6 Cellulase activity of photo thermal artificial cellulosome by Sunlight irradiation.

ことをセルロース分解における還元糖生産量の 計測により証明した(図5).近赤外光のみを 照射した場合 60°C の時に恒温水槽 70°C 相当 の還元糖生産量であった.このことは保温なし でも還元糖生産量を高められることを示してい る.さらに面白いことに,各温度の恒温水槽に て温めた場合と比較すると,光照射した場合, 酵素の活性の高さの割に,水温は低かった.こ のことは,粒子表面のみが効率的に加温されて いることを示しており,エネルギー的に無駄の 少ないシステムであることが示された.さらに, 実際に太陽光を照射したときクラスター化なし の場合に比較し,約7倍,球状金ナノ粒子に比 較して約2倍の酵素活性化を達成した(図6). このことは実際の太陽光によっても反応できる ことを示し、クラスター化効果によっても活性 向上していることを示した.

参考文献

- Kim D.-M., Nakazawa H., Umetsu M., Matsuyama T., Ishida N., Ikeuchi A., Takahashi H., Asano R., Kumagai I., A nanocluster design for the construction of artificial cellulosomes, Catalysis Science & Technology, 2 (2012) 499–503. https://doi.org/10.1039/c2cy00371f
- Nakazawa H., Kawai T., Ida N., Shida Y., Kobayashi Y., Okada H., Tani S., Sumitani J.-i., Kawaguchi T., Morikawa Y., Ogasawara W., Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion, Biotechnology and Bioengineering, 109 (2012) 92–99.

https://doi.org/10.1002/bit.23296

- Nakazawa H., Kim D.-M., Matsuyama T., Ishida N., Ikeuchi A., Ishigaki Y., Kumagai I., Umetsu M., Hybrid nanocellulosome design from cellulase modules on nanoparticles: synergistic effect of catalytically divergent cellulase modules on cellulose degradation activity, ACS Catalysis, 3 (2013) 1342–1348. https://doi.org/10.1021/cs400012v
- Nakazawa H., Okada K., Onodera T., Ogasawara W., Okada H., Morikawa Y., Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei, Applied Microbiology and Biotechnology, 83 (2009) 649–657. https://doi.org/10.1007/s00253-009-1901-3
- Xie J., Lee J.Y., Wang D.I.C., Seedless, surfactantless, highyield synthesis of branched gold nanocrystals in hepes buffer solution, Chemistry of Materials, 19 (2007) 2823–2830. https://doi.org/10.1021/cm0700100

外部発表成果

1. Umetsu M., Nakazawa H., Niide T. Hybrid nanoassembly via material-binding peptides and proteins, Bio Industry, 39 (2022) 27–34. <https:// jglobal.jst.go.jp/en/detail?JGLOBAL_ID= 202202278980871925>

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 117-121 /https://doi.org/10.14356/hptf.21117

HPTF21117

表面形成ラジカルを利用したポリマー被覆技術の開発

Polymer Coating Technique Using Surface-Forming Radicals

研究代表者 Research leader: 中島 佑樹

Yuki NAKASHIMA

国立研究開発法人産業技術総合研究所マルチマテリアル研究部門 主任研究員 Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Researcher E-mail: nakashima-yuki@aist.go.jp

抄 録

セラミック粒子へのポリマー被覆は、粉体の均一・高分散性に寄与し、その特性向上を可能とする. 現行のポリマー被覆技術は、精緻な構造・組成制御ができるものの、その工程が煩雑であることが 課題となっている.そこで、粒子の破壊や昇温を伴わない機械的処理(摩砕)が引き起こす粒子極 表面のラジカルを最大限利用した粒子表面での選択的なポリマー形成技術を開発した.本研究では、 モデル材料としてシリカを母粒子として表面ラジカルとスチレンとを反応させることで、ポリスチ レンの被覆を行った、パラメータとして、処理時間、スチレンの添加量、母粒子の材質を検討し、 ポリスチレンの形成機構に関して調査した。今後はこれらの結果を基に研究を進め、摩砕によるポ リマーの形成機構を明らかとする予定である.

ABSTRACT

Polymer coating on ceramic particles contributes to the homogeneity and high dispersion of powders and improves their properties. The current polymer coating technology can control the structure and composition, but the process is complicated. Therefore, we have developed a technique for selective polymer formation on the surface of particles using radicals at the extreme surface of particles induced by mechanical treatment that does not destroy the particles or increase the temperature. In this study, polystyrene was coated by the reaction of surface radicals with styrene using silica particles as a model material. The processing time, the amount of styrene added, and the material of the base particles were varied as parameters, and the formation mechanism of polystyrene was investigated. Based on these results, we will continue our research to elucidate the formation mechanism of polymers by ball milling.

研究背景と目的

用し化学反応を誘発させる手法である.一般に、 それらの反応は、粉砕に伴う高活性な新生面の メカノケミカル法は、機械的エネルギーを利 利用、過度な機械的エネルギーの投入により発

Copyright © 2024 The Author. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

– 117 –

生する高温の利用,により行われる.一方で, 粉砕や昇温が無くとも"表面"の反応に限れば 各種反応が進行することが明らかとなってお り、このような機械的な処理を"表面摩砕"と 呼ぶ. 表面摩砕では, 例えばボールミルの場合, 粉体 – ボール、粉体 – 壁面、粉体 – 粉体の摩擦 により発生する比較的弱い機械的エネルギーに より、表面にエネルギーが加えられることで不 安定な表面近傍の結合破断や結晶の歪形成が主 因子となり,各種反応が進行する.表面摩砕を 利用した技術の一例として無焼成セラミック製 造がある (Nakashima, 2018; Razavi-Khosroshahi (Sena), 2020a, b). 無焼成セラミック法は、粉 体を表面摩砕し、その後に化学的処理を施すこ とで、焼成工程を経ずとも高密度なセラミック を製造可能とする手法である、この際、表面摩 砕時には粉体表面の結合が破断されることによ り発生するラジカルと表面に吸着している水や 大気中の水分とが反応し水酸基量が増大すると 共に, 粉体表面数層にわたる結晶が歪む. その ため、①水酸基量の増大により、化学的に溶け やすい (反応しやすい) 表面が提供されること, ②表面が反応した際に,表面数層にわたる結晶 が歪んだ構造も合わせて反応されること、によ り化学的処理時に表層がオリゴマーとして溶出 する.結果として、溶出成分が粒子間に強固な 固体架橋を形成し, 無焼成で高密度なセラミッ クが得られる.本研究では、この表面摩砕を最 大限活用し, 粉体表面へのポリマー層の構築を 検討した.

粉末の表面改質は、有機溶媒中への粉末の分 散性向上や粉末のハンドリング性の向上に繋が る.そのため、粉体をフィラーとして使用する 様な材料において、粉体の均一・高分散性に寄 与し、その特性向上を可能とする.粉体へのポ リマーコーティングや改質基の導入は、一般に、 湿式での粉体処理によって行われている.例え ば、ポリマーコーティングは粉体表面への改質 基の導入とその改質基上でのポリマー成長の二 段階の改質機構により行われる(Takai et al., 2007).二段階改質は均質なポリマーを選択的 にコーティングすることが可能なため、非常に 有用な手法であるが、操作が煩雑であるととも に製造コストが高いことが課題である.一方で, 簡便な操作である機械的エネルギーによるポリ マーコーティング法も報告されている. 機械的 手法は、ポリマーと粉末を混合しポリマーを粉 体表面に圧着する手法, モノマーを機械的エネ ルギーで重合させ粉体表面でポリマーを形成す る手法の二つの手法に大別される。これらの手 法においては、粉体が粉砕されるときに生成さ れる高活性の新生面を利用して、ポリマーの吸 着とモノマーの反応を促進している. したがっ て、製造コストの観点からはプロセスが単純な 機械的処理法は非常に優位であるが、粉砕に よって粒子の特性が変化する可能性があるため 材料が制限される.機械的処理法において、粉 砕, すなわち新生面を利用するのは, 新生面で 多くのラジカルが生成し、効率的・特異的な反 応が可能であるためである.以上より、本研究 では前述した粉砕を伴わない表面摩砕により発 生する高活性場を粉末の表面改質やポリマー コーティングへの適用検討を行った.本技術は プロセスコストの増大や環境高負荷に繋がる湿 式処理ではなく、乾式での処理であるため工業 利用に有望な手法であると想定される.

研究方法

平均粒子径 400 nm の非晶質球状シリカ粒子 (SOC1,(株)アドマテックス)を使用し実験 を行った.250 mL ポリプロピレン容器に所定 量のシリカ粉末とジルコニアボール,0.5~ 5.0 mL のスチレンを添加し,260 rpm の回転速 度で所定時間ボールミル処理を行った.粉体形 状は走査型電子顕微鏡(SEM)および透過型 電子顕微鏡(TEM)にて観察し,改質粉体の 分子構造とポリスチレン形成量はフーリエ変換 赤外分光光度計(FT-IR)と熱重量測定/示差 熱分析(TG-DTA)にて評価した. 研

研究成果

1. ボールミル処理に伴う粉砕と昇温

スチレン未添加でボールミル処理に伴う比表 面積の変化(粉砕)とポット内の温度変化を評 価した.その結果,粉体の比表面積は処理時間 に依らずほぼ一定であり,原料粉体と72時間 のボールミル処理後の比表面積はそれぞれ 4.31 m²/gと4.01 m²/gであった.ポット内の温 度は20°Cから24°Cの範囲で僅かに変動し, その変化は外気温に追従するものであった.ま た,外気温とポット内温度を比較すると1°C 程度ポット内の方が高かったが,その差が僅か であることから反応に寄与するほどの熱エネル ギーは発生していない.以上のことから,本ボー ルミル条件は,粉砕や昇温が生じない温和な条 件であり,生じる現象は主に表面摩砕であるこ とが推察される.

2. ボールミル処理によるポリマー被覆

図1にスチレン1mLで24時間処理した粉体のSEM像とTEM像を示す.EDSにて評価したところ、中央部の粗大球状粒子ではSiが検出され、外周部の球状粒子からはCのみが検出された.したがって、球状シリカ粒子の表面に付着するように球状ポリスチレン粒子が形成した.ポリスチレンは以下に示すラジカル重合により形成される.最初に、シリカ粒子表面に形成するラジカルによりモノマーがラジカル化される.その後、ラジカル化されたスチレンが他のスチレン分子と急速な反応を繰り返し、ポリマー鎖が伸長し成長する.成長ラジカルは

Fig. 1 TEM and SEM images of prepared particle.

二つのラジカル同士または大気中の水分との反応に伴う再結合停止や不均化停止により成長が 停止されるまで成長を続ける.このように,シ リカ表面のラジカルを起点としてシリカ表面に ポリスチレンが形成したと考えられる.

図2に各処理時間で得られた複合粉体のFT-IRの結果を示す. 原料シリカには、3740 cm⁻¹ 付近に孤立水酸基に起因するピーク(Morrow and Cody, 1973)と3650 cm⁻¹付近に表面吸着水 に起因するブロードなピークが観測された. 12 時間処理した粉体では2800-3200 cm⁻¹にポリ スチレンに起因するピークが僅かに観測され、 処理時間の増大に伴いピークが明瞭化し、ポリ マー量が増大していることが示唆された.

図3に24時間処理後の粉体のTG-DTA曲線 を示す.369℃と537℃に発熱ピークが観測さ れ,何れも重量減少を伴っていた.ポリスチレ

Fig. 2 FT-IR results of particles treated for various times.

Fig. 3 TG-DTA curves of particles treated with 1 mL of styrene for 24 h.

研

究

助

成

ンの引火点、発火点はその構造により変動する もののそれぞれ 345°C. 490°C である. 今回観 測された発熱ピークはこれらの値と類似してお り、初期ピークでポリスチレンの表面部分が燃 焼し、後半のピークで残存ポリスチレンが燃焼 したのではないかと推察される. したがって. 今回得られた重量減少はポリスチレンの燃焼に 起因するものであると考えられ、120~800℃ の重量減少率はシリカに対するポリスチレンの 重量比に対応する. そこで以下の計算式(1),(2) を用いて各処理時間におけるスチレンのポリス チレンへの反応量 (C_{st}) を算出した.

$$w_{\text{theory}} = \frac{m_{\text{St}}}{m_{\text{SiO}_2} + m_{\text{St}}} \times 100 \tag{1}$$

$$C_{\rm st} = \frac{w_{\rm measure}}{w_{\rm theory}} \times 100 \tag{2}$$

ここで、 $m_{\rm st}$, $m_{{
m SiO}_2}$, $w_{\rm theory}$, $w_{\rm measure}$ はそれぞ れシリカの重量 [g], 添加スチレンの重量 [g], 理論的な重量減少 [wt%], 実測した重量減少 [wt%] を示す. 図4に各処理時間におけるスチ レンの反応率を示す. 比較としてポット内に ボールを入れずに24時間処理した際の反応率 を赤線で示す。ボールの有無で比較するとボー ルがある条件でのみ優位に反応が進行し約55% の反応率を示した、したがって、ボールが存在 することによりスチレンの重合反応が進行して おり、粉砕・昇温が生じていない今回の条件で

12 24 36 Milling time [h] Fig. 4 Conversion ratio of styrene at various ball milling time.

Amount of styrene: 1mL

60

40

20

0

0

Conversion ratio [%]

は、表面摩砕により反応が進行していることが 示された.6時間ではスチレンの反応はほぼ生 じていない(約5%)が、処理時間が増大する ほど反応率が上昇し36時間で約60%の反応率 を示した. 今回の反応では、表面にラジカルが 発生しそのラジカルがスチレンと反応すること により進行する.表面に発生するラジカルは数 ピコ秒で失活するほど反応性が高いため、反応 確率は非常に低い. そのため、十分に反応する ためには18時間程度の処理時間を要したと考 えられる.一方.十分に反応が進行した後には. シリカ粒子表面がポリマー層で覆われ、それが ボールとシリカとの摩砕によるラジカル発生を 抑制するため24時間以降は積極的に反応が進 行しなかったと考えられる. また、過度に長時 間の処理では形成したポリマー層が剥離し見か け上、スチレンの反応率が低下したと推察され る.

3. スチレンモノマー量の影響

図5にスチレンの反応率に対するスチレンの 添加量の影響を示す. スチレンの添加量が 0.5 mLから1 mLまでは反応率が14%から 55% まで上昇し、その後は減少し、3 mL 以上 では23%で一定となった。今回の反応では前 述の通り、シリカ表面で発生するラジカルを起 点として反応が進行し、その後にラジカル化さ れたモノマーが別のモノマーと反応することで

Fig. 5 Conversion ratio of styrene with various amounts of styrene.

研

究

助

成

48

ポリスチレンが形成する.したがって,スチレン量が少ない時は反応する確率が低くなるため,それに伴い反応率が低くなる.一方,多量添加時には図4に示すようにポリマー被覆された後はシリカからのラジカル供給が減少するため反応率が減少する.このような機構からスチレン添加量が1mLの時にスチレンの反応率が極大値を示したと考えられる.

4. ポリマー被覆における母粒子の影響

1 μm のシリカ粒子と 0.3 および 3 μm のアル ミナ粒子を用いて, 1 mL のスチレンを添加し 24 時間ボールミル処理を行った. その際, 密 度の異なるシリカ粒子とアルミナ粒子を比較す るため, 粉体の総体積を同等とし比較を行った. その結果,何れの試料においてもポリスチレン に起因する重量減少は観測されず,反応が進行 しなかった. 1 μm のシリカ粒子では,前述の 実験で使用した 400 nm のシリカ粒子と比較し 比表面積が小さくなる. その結果として, ラジ カル発生場も相対的に少なくなったことで,24 時間のボールミル処理でも重合が進行しなかっ たと考えられる.一方, 微細なアルミナ粒子で は総表面積はほぼ同等であるにも関わらず反応 が進行しなかった. これは,材料種によりラジ カルの発生の程度が異なるためであり,同一条 件ではスチレンの重合に十分なラジカルが発生 しなかったためではないかと推察されるが,反 応機構の解明には更なる実験が不可欠である.

参考文献

- Morrow B.A., Cody I.A., Infrared spectra of the isolated hydroxyl groups on silica, The Journal of Physical Chemistry, 77 (1973) 1465–1469. https://doi.org/10.1021/j100630a027
- Nakashima Y., Razavi-Khosroshahi H., Takai C., Fuji M., Non-firing ceramics: activation of silica powder surface for achieving high-density solidified bodies, Advanced Powder Technology, 29 (2018) 1900–1903. https://doi.org/10.1016/j.apt.2018.04.029
- Razavi-Khosroshahi (Sena) H., Sato T., Fuji M., Non-firing solidification: a new room temperature ceramics processing, Advanced Powder Technology, 31 (2020a) 2020–2024. https://doi.org/10.1016/j.apt.2020.02.038
- Razavi-Khosroshahi (Sena) H., Ishida H., Fuji M., Highstrength non-firing ceramics by mechanochemical treatment, Advanced Powder Technology, 31 (2020b) 4672– 4678. https://doi.org/10.1016/j.apt.2020.10.013
- Takai C., Fuji M., Takahashi M., A novel surface designed technique to disperse silica nano particle into polymer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292 (2007) 79–82. https://doi.org/10.1016/j.colsurfa.2006.06.007

外部発表成果

口頭・ポスター発表

- 中島 佑樹,福島 学,"表面摩砕を利用した 粉体表面でのポリマー形成"日本セラミッ クス協会第35回秋季研究発表会(Tokushima, Sep. 14–16, 2022)1R13.
- Nakashima Y., Fukushima M., "Direct polymer formation on powder surface by ball milling process" ICCCI2022 (Fujiyoshida, Nov. 15–18, 2022) 1-I-A-03.
- Nakashima Y., Fukushima M., "Preparation of polystyrene coated silica particle by ball milling process" ICACC2024 (Florida, USA, Jan. 28– Feb. 2, 2024).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 122-126 /https://doi.org/10.14356/hptf.21118

HPTF21118

CIP 成型を用いた新規細胞外マトリックス材料の開発 Development of New Extracellular Matrix Material Using CIP Molding

研究代表者 Research leader: 根岸 淳 Jun NEGISHI 信州大学学術研究院繊維学系 准教授 Graduate School of Science and Technology, Shinshu University, Associate Professor E-mail: jnegishi@shinshu-u.ac.jp

抄 録

組織再生や細胞機能の解析に向けて、組織や臓器の細胞外マトリックス(ECM)を再現した足場 材料が必要とされている. ヒトや動物の組織から免疫原である細胞を除去した脱細胞化組織が移植 材料として利用されているが、細胞が浸潤しにくいため細胞培養用の足場材料への応用は困難であ る. 本研究では、脱細胞化組織粉末を加圧成型した ECM ブロックの作製法の開発、および ECM ブロックの多孔質化と細胞培養基材としての有用性の解明に取り組んだ. 冷間等方圧(CIP)印加 により高強度の ECM ブロックが作製可能なことを明らかにし、また、脱細胞化組織粉末の原料に よって ECM ブロックの特性が変化することを見い出した. さらに、NaCl とタンパク質架橋酵素を 用いたブロックの多孔質化を行い、多孔質 ECM ブロックに細胞が接着可能なことを明らかにした. 本研究により、CIP 成型を用いた動物組織の ECM 組成を有する新たな足場材料の作製基盤が確立 された.

ABSTRACT

Scaffolds that reproduce the extracellular matrix (ECM) of tissues and organs are necessary for tissue regeneration and analysis of cell function. Decellularized tissue, which is obtained by removing immunogenic cells from human or animal tissue, is used as a transplant material, but it is difficult to use as a scaffold for cell culture because cells do not infiltrate. In this study, we developed a method for fabricating an ECM block by pressure molding, and worked on making the ECM block porous and elucidating its usefulness as a cell culture substrate. It was found that a high-strength ECM block can be fabricated by applying cold isostatic pressure (CIP), and that the properties of the ECM block change depending on the raw material of the decellularized tissue powder. Furthermore, the blocks were made porous using NaCl and protein cross-linking enzymes, and cells were shown to be able to adhere to the porous ECM blocks. This study established the basis for creating new scaffold materials containing the ECM composition of animal tissues using CIP molding.

研究背景と目的

ヒトや動物の組織や臓器は、細胞と細胞外マ トリックス(ECM)で構成されている. ECM は細胞の支持や細胞機能の調節に関与してお り、組織再生や細胞機能の解析には ECM を模 倣した足場材料が必要とされている.

異種移植では移植片の細胞が免疫原となり拒 絶反応が惹起されるが、ECM は種間で共通な 部分が多く拒絶されにくいことが知られてい る、ヒトや動物の組織から細胞を除去した脱細 胞化組織は、免疫原性が低いため移植などに利 用されている (Badylak et al., 2008). しかし, 播種された細胞が脱細胞化組織内部まで浸潤し にくいため、細胞培養の足場材料への応用が困 難となっている、近年、分解酵素で可溶化した 脱細胞化組織の溶液やゲルが細胞培養に利用さ れ、原料組織に特異的な機能を示すことが明ら かになっている (Shridhar et al., 2020; Saldin et al., 2017). しかし, 酵素処理による ECM 変性 や力学的強度の低さが課題となっている.また. 脱細胞化組織を粉砕した脱細胞化組織粉末は創 傷治癒の誘導などに利用されているが、粉末状 であるため細胞培養の足場には適していない (Tabuchi et al., 2015).

本研究グループでは、加圧成型による脱細胞 化組織粉末のブロック化手法の開発に取り組ん でいる.加圧成型法のひとつである冷間等方圧 (CIP)成型は、シリコンなどのモールドに粉 末を充填して高静水圧を印加することでブロッ クを作製する.モールドによって形状が制御可 能であることや高静水圧によって高強度のブ ロックを作製可能なことが特徴である.

本研究では、脱細胞化骨組織粉末を CIP 成型して ECM ブロックを作製、特性解析を行い 「CIP 成型による脱細胞化組織粉末の成型法の 基盤確立」、「ECM ブロックの足場材料として の有用性の解明」を目的とした.

研究方法

1. 脱細胞化骨組織粉末の作製

研究用の成体ブタおよび胎児ブタの骨組織 (皮質骨,骨髄,軟骨)に高静水圧印加,細胞 残渣洗浄を行って脱細胞化骨組織を作製した (Negishi et al., 2017).続いて,乾式粉砕または 凍結粉砕処理により脱細胞化骨組織を粉末化 し,篩を用いて粒径 150 µm 以下の粉末を回収 した.

内径 8 mmの円柱状のステンレス型に各脱細 胞化骨組織粉末を充填してハンドプレスを行 い,ハンドプレス成型 ECM ブロックを作製し た.また,各脱細胞化骨組織粉末を内径 8 mm, 厚さ 5 mmのシリコンモールドに充填して真空 パックし,CIP 成型機を用いて開始温度 30°C, 10 分間,1000 MPaの静水圧を印加して CIP 成 型 ECM ブロックを作製した.

3. ECM ブロックの特性評価

ハンドプレス成型または CIP 成型した脱細 胞化胎児骨髄ブロックの最大破断応力を力学試 験機で測定し, また, 各脱細胞化胎児骨髄ブロッ クをリン酸緩衝液 (PBS) に浸漬して溶液中で の形状維持を評価した.

CIP 成型 ECM ブロックを 4% パラホルムア ルデヒドで固定,段階脱水後に t-butyl alcohol に置換して減圧乾燥した.走査型電子顕微鏡 (SEM)で ECM ブロックの表面構造を観察した. また, ECM ブロックの吸水性評価として,CIP 成型 ECM ブロックを 37°C で 7 日間 PBS に浸 漬し,形状観察を行った.

CIP 成型による多孔質 ECM ブロックの 作製

脱細胞化胎児骨組織粉末と NaCl およびタン パク質架橋酵素であるトランスグルタミナーゼ (TG)を混合し、シリコンモールドに充填して 研

真空パックした. CIP 印加後, 37℃ 雰囲気下 で 72 時間 TG の酵素反応を行い, 続いて, PBS に 24 時間浸漬することで NaCl を除去し た. その後, 凍結乾燥を行って多孔質 ECM ブ ロックを作製した.

5. 多孔質 ECM ブロックの評価

作製した各多孔質 ECM ブロックの SEM 観 察を行い,表面構造を評価した.また,ラット 脂肪由来幹細胞 (rADSC) を多孔質 ECM ブロッ クに播種,培養5日後に SEM 観察を行って多 孔質 ECM ブロックへの rADSC の接着と細胞 形態を評価した.

研究成果

1. 成体と胎児ブタの脱細胞化骨組織粉末

破砕処理により,脱細胞化胎児皮質骨,骨髄 と軟骨から粒径 100 µm 以下の粉末が作製された.脱細胞化成体皮質骨は粒径 100 µm から 150 µm に粉末化されたが,脱細胞化成体骨髄 と軟骨は粉末化されなかった.

成体骨髄は脂質によって破砕が阻害されたた め、粉末ではなくペースト状になったと考えら れる.また、多糖を多く含有している成体軟骨 は弾性率が高いため、粉末化されなかったと推 察される.以降の実験では、粉末化した脱細胞 化胎児骨組織および脱細胞化成体皮質骨を使用 した.

2. 成型法による ECM ブロックの特性

ハンドプレス, CIP 共に脱細胞化胎児骨髄粉

末をブロック化することが可能だった.ハンド プレス成型した脱細胞化胎児骨髄ブロックの最 大破断応力は 15.5 MPa であり,PBS 浸漬直後 にブロックが崩壊した.一方,CIP 成型した脱 細胞化胎児骨髄ブロックは,装置の測定限界で ある 28.2 MPa でも破壊されなかった.また, PBS 浸漬 24 時間経過後もブロックは崩壊せず に形状が維持された(図1).

加圧成型では、圧力で粉末が変形して粉末同 士の接触面積が増加することで、ファンデル ワールス力も増加してブロック化する(Stokes and Evans, 1996). ハンドプレスと比べて、静 水圧を利用する CIP は高圧を印加することが 可能なため、強度が上昇したと考えられる.

3. 原料による ECM ブロックの特性

所見評価において,脱細胞化胎児骨組織粉末 と脱細胞化成体皮質骨粉末のECMブロックの 外観に大きな差異は認められなかった.脱細胞 化成体皮質骨のブロックは凹凸が認められ,脱 細胞化胎児骨組織ブロックは凹凸があまり観察 されなかった(図2).

脱細胞化成体皮質骨粉末は粒径が少し大き く,硬かったため,CIPによる粉末の変形が少 なく凹凸が残ったと推察される.一方,脱細胞 化胎児骨組織粉末は粒径が小さく,硬度が低 かったため,変形率が高くなり粉末同士の接触 面積が増大したと考えられる.

PBS 浸漬7日後, すべての ECM ブロックが 崩壊していなかった. 脱細胞化成体皮質骨のブ ロックは一部に欠けが認められ, 脱細胞化胎児 骨髄と皮質骨のブロックはほとんど体積変化が

Fig. 1 Maximum stress of hand press molded block and CIP molded block and photos after PBS immersion.

研

究

Fig. 2 Photos of the ECM block immediately after CIP molding and after soaking in PBS for 7 days.

Fig. 3 SEM images of ECM block and porous ECM block (scale bar = $100 \mu m$).

認められなかった.一方,脱細胞化胎児軟骨ブ ロックは大きく膨潤していた(図2).

変形率の低い成体皮質骨は粉末同士の接触面 積が小さいため、欠けが生じたと推察される. 胎児皮質骨や骨髄と比べ、軟骨は多糖を多く含 有した組織であるため、脱細胞化胎児軟骨ブ ロックの吸水性が高くなったと考えられる.

4. 多孔質 ECM ブロックの作製と細胞播種

脱細胞化胎児骨組織粉末, NaCl とタンパク 質架橋酵素の TG を用いて ECM ブロックの多 孔質化を行った. 脱細胞化胎児皮質骨, 骨髄の ブロックの表面に 100 μm ほどの孔が認められ た. 一方, 脱細胞化胎児軟骨のブロックではほ とんど孔が認められず, 10 μm 程度の孔がわず かに存在していた (図 3).

CIP 成型後の NaCl 除去により, ECM ブロッ

クに孔が形成されたと考えられる. 膨潤率の低い脱細胞化胎児骨髄, 皮質骨のブロックでは孔が維持されたが, 膨潤しやすい脱細胞化胎児軟骨ブロックでは NaCl 洗浄時に粉末が膨潤したため, 孔がふさがりやすくなったと考えられる.

すべての脱細胞化胎児骨組織の多孔質ブロック表面へのrADSCの接着が認められた.脱細胞化胎児骨髄と軟骨のブロック内部にはrADSCが認められなかったが,脱細胞化胎児皮質骨の多孔質ブロック内部にrADSCが観察された(図4).

脱細胞化胎児骨髄および軟骨の粉末は吸水し て孔が小さくなったため、ブロック内部に細胞 が到達しなかったと考えられる.脱細胞化胎児 皮質骨は吸水性が低かったため、孔が維持され 細胞がブロック内部まで浸潤することが可能に なったと推察される.

Fig. 4 SEM images of the surface and center of the porous ECM block 5 days after rADSC seeding. (arrow heads indicate cells, scale bar = $100 \mu m$).

以上から、本研究により CIP 成型を用いた 脱細胞化組織粉末のブロック化手法が確立さ れ、また、多孔質 ECM ブロックが細胞培養の 足場材料として有用なことが明らかにされた.

参考文献

- Badylak S.F., Gilbert T.W., Immune response to biologic scaffold materials, Seminars in Immunology, 20 (2008) 109–116. https://doi.org/10.1016/j.smim.2007.11.003
- Negishi J., Hashimoto Y., Yamashita A., Zhang Y., Kimura T., Kishida A., Funamoto S., Evaluation of small-diameter vascular grafts reconstructed from decellularized aorta sheets, Journal of Biomedical Materials Research Part A, 105 (2017) 1293–1298.

https://doi.org/10.1002/jbm.a.36017

Saldin L.T., Cramer M.C., Velankar S.S., White L.J., Badylak

S.F., Extracellular matrix hydrogels from decellularized tissues: structure and function, Acta Biomaterialia, 49 (2017) 1–15.

https://doi.org/10.1016/j.actbio.2016.11.068

Shridhar A., Lam A.Y.L., Sun Y., Simmons C.A., Gillies E.R., Flynn L.E., Culture on tissue-specific coatings derived from α-amylase-digested decellularized adipose tissue enhances the proliferation and adipogenic differentiation of human adipose-derived stromal cells, Biotechnology Journal, 15 (2020) 1900118.

https://doi.org/10.1002/biot.201900118

- Stokes R.J., Evans D.F., Fundamentals of Interfacial Engineering, John Wiley & Sons, 1996, ISBN: 978-0-471-18647-2.
- Tabuchi M., Negishi J., Yamashita A., Higami T., Kishida A., Funamoto S., Effect of decellularized tissue powders on a rat model of acute myocardial infarction, Materials Science and Engineering: C, 56 (2015) 494–500. https://doi.org/10.1016/j.msec.2015.07.010

外部発表成果

口頭・ポスター発表

1. 根岸 淳, "3 次元培養に向けた細胞導入法お

よび組織組成を模倣した多孔質材料の開 発", 第5回ファーマラボEXPO (Tokyo, Jul. 5-7, 2023).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 127-133 /https://doi.org/10.14356/hptf.21119

HPTF21119

単分散 PLGA ナノ粒子の用時調製技術の開発

Development of an On-Demand Preparation Technique for Monodisperse PLGA Nanoparticles

研究代表者 Research leader: 橋本 雅彦 Masahiko HASHIMOTO

> 同志社大学大学院理工学研究科 教授 Graduate School of Science and Engineering, Doshisha University, Professor E-mail: mahashim@mail.doshisha.ac.jp

抄 録

本研究では、乳酸-グリコール酸共重合体(PLGA)ナノ粒子の用時調製技術の開発を試みた、ポ リジメチルシロキサン (PDMS) 製のポンプレスマイクロ流体チップに独自の吸引アクチュエータ を導入し、高粘度高分子ポリマー溶液を効果的に制御して PLGA ナノ粒子を生成することに成功 した、連続相としての水相に溶解させたポリビニルアルコール (PVA)が、水中油滴の安定的な生 成に重要な役割を果たすことが示唆された。また、マイクロ流体チップ内の水中油滴回収リザーバ において、油相と水相の相互溶解に基づく PLGA の結晶化プロセスが確認された. 真空パックさ れた脱気済み PDMS マイクロ流体チップを長期保存してもその性能が維持されることが実証され ていることから、本法を用いることによって PLGA ナノ粒子の用時調製が可能であることが示唆 された.

ABSTRACT

In this study, the author aimed to develop a preparation technique for poly(lactic-co-glycolic acid) (PLGA) nanoparticles. By incorporating a unique suction actuator into a polydimethylsiloxane (PDMS) pumpless microfluidic chip, the author successfully controlled high-viscosity polymer solutions, achieving the effective generation of PLGA nanoparticles. It was suggested that polyvinyl alcohol (PVA) dissolved in the aqueous phase as the continuous phase played a key role in the stable formation of oil-in-water droplets. Within the droplet collection reservoir of the microfluidic chip, the crystallization process of PLGA based on the mutual dissolution of the oil and water phases was observed. The vacuum-packed, degassed PDMS microfluidic chip demonstrated long-term preservation without compromising performance, supporting the implication that the timely preparation of PLGA nanoparticles is feasible through this method. This study highlights the success of this novel approach in the controlled production of PLGA nanoparticles, emphasizing its potential for practical applications.

under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

研 究 助 成

研究背景と目的

乳酸-グリコール酸共重合体 (poly(lactic-coglycolic acid); PLGA)は、乳酸とグリコール酸 がランダムに共重合したポリマーである.体内 に取り込まれた PLGA は、加水分解されてモ ノマーの乳酸とグリコール酸に戻り、さらに TCA 回路で水と二酸化炭素に分解され体外へ 排出されるため、体内残留の無い安心で安全な 医薬品キャリヤーとして多くの使用実績があ る. 薬物を包み込んだ PLGA のナノ粒子やマ イクロ粒子は、制御された速度で薬物を放出す ることを可能とし、これによって薬物の効果が 持続するため, PLGA 微粒子の利用はドラッグ・ デリバリー・システムにおいて特に注目され ている (Lagreca et al., 2020; Makadia and Siegel, 2011; Mir et al., 2017; Semete et al., 2010; Xu et al., 2017).

高分子球形晶析法のひとつである「水中エマ ルション溶媒拡散法(Emulsion Solvent Diffusion (ESD) method)」にて、薬物封入 PLGA ナノ粒 子を作製し(Cohen-Sela et al., 2009; Esmaeili et al., 2007; Murakami et al., 2000),それを利用し たドラッグ・デリバリー・システム機能を有す る医薬品や化粧品が既に社会実装されている. PLGA ナノ粒子の内包薬物の徐放性は、PLGA の加水分解特性以外にも PLGA 微粒子のサイ ズにより左右されるが、ESD 法では粒径が精 密に制御された微粒子を作製することは困難で ある.また、PLGA 微粒子は、熱や水分の影響 を受けやすいため、用時調製することが望まし いが、PLGA 微粒子の簡便・迅速な用時調製技 術は確立されていない.

筆者らの研究グループは,脱気したポリジメ チルシロキサン (polydimethylsiloxane; PDMS) 製のマイクロ流体チップの入口リザーバに分散 媒と分散質を注入するだけで単分散性の高いコ ロイド粒子を自律駆動的に製造する独自の技術 を有している (Murata et al., 2018; Nakatani et al., 2020; Tanaka et al., 2015).本研究では,本 法に ESD 法の晶析原理を導入することによっ て粒子サイズが精密に制御された PLGA ナノ 粒子の用時調製技術を確立することを試みた.

研究方法

1. 試薬

水溶液の調製には、超純水製造装置(Direct-Q UV, Merck) で得られた超純水を用いた.本研 究では、連続相(水相)として 0.5–10%(*w/v*) のポリビニルアルコール (polyvinyl alcohol; PVA)(重合度 500,富士フイルム和光純薬) 水溶液を用いた.分散相(油相)には、ジクロ ロメタンあるいは酢酸エチルで溶解させた 1% (*w/v*)のPLGA(分子量7000–17000,Sigma Aldrich)溶液を用いた.PDMSシートの成形に は、モメンティブ・パフォーマンス・マテリア ルズ・ジャパン合同会社製の主剤(TSE3032(A)) と硬化剤(TSE3032(B))を用いた.

2. PDMS マイクロ流体チップの作製

本研究では、標準的なソフトリソグラフィー 技術を用い、フローフォーカシングパターンの マイクロ流路を有する PDMS 製のマイクロ流 体チップを作製した(図1). なお、シリコンウェ ハ上にスピンコートするフォトレジスト (SU-8. 日本化薬)の厚みを調整することによって、 上記マイクロ流路の深さが 75 µm となるよう にした. PDMS 主剤と硬化剤を 10:1 の重量比 で混合することによって成形された 50 mm × 35 mm × 4 mm $(L \times W \times H)$ O PDMS $\stackrel{.}{\sim}$ – $\stackrel{.}{\vdash}$ (図1: PDMS layer 1) 表面にパターニングされ たマイクロ流路の終端に、生検トレパンを用い て直径4,6,8mmの貫通穴(図1:R1, R2, R3) を開けた. 上記 PDMS 基板とガラスプレー トに対してソフトプラズマエッティング装置 (メイワフォーシス, SEDE-P)を用いてプラズ マを照射し、両レイヤーを不可逆的に接着させ た.

R3のオープントップをカバーするために, 50 mm × 24 mm × 4 mm $(L \times W \times H)$ の PDMS シート (図 1:PDMS layer 2) を成形した.

Fig. 1 Schematic drawings of a microfluidic chip consisting of two PDMS sheets (PDMS Layer 1 and PDMS Layer 2) and a single glass plate for the creation of oil-in-water droplets: (a) and (b) represent the top and side views of the chip, respectively. The microchannels, depicted as solid blue lines in (a), are 75 μ m deep and formed on the lower surface of PDMS Layer 1. The open-bottom through-holes R1, R2, and R3 located at the channel terminus are irreversibly sealed with a glass plate through plasma treatment, serving as the oil phase reservoir, water phase reservoir, and droplet collection reservoir, respectively. The lower surface of PDMS Layer 2 is patterned in a grid shape using a CO₂ laser-engraving machine, and it is adhered to the upper surface of PDMS Layer 1, utilizing the viscoelastic properties of PDMS to seal the open top of R3.

この PDMS シート下表面の 20 mm × 15 mm の エリアに CO₂ レーザーマーカー (ML-Z9550TA; KEYENCE)を用いてグリッド状のパターンを 付与した後, PDMS の粘弾性特性を利用して PDMS layer 1 の R3 を覆うように貼り付けた.

3. PDMS マイクロ流体チップを用いた単分 散水中油滴の作製

上記 PDMS マイクロ流体チップの PDMS レ イヤーに溶解している空気を脱気するために, チップを真空デシケーター内に入れ,油圧式真 空ポンプ(TA150XA, TASCO)を用いてデシケー ター内を 200 Pa になるまで減圧した後,デシ ケーターのコックを閉じ,90分間放置した. 脱気されたチップをデシケーターから取り出 し,マイクロピペットを用い,図1に示す入口 リザーバ R1 に油相 30 μL, R2 に水相 80 μL を すばやく注入した.

油相流路と水相流路が合流するクロスジャン クション付近で生成する水中油滴を,高速度カ メラ(HAS-D71, DITECT)を備えた倒立型顕 微鏡(AXJ-5300TPHFL,レイマー)を用いて 明視野撮影した.なお,高速度カメラに外部ト リガーを10秒間隔で入力し,2000 fpsの取り 込みレートで画像を取得した.

研究成果

1. チップ内蔵吸引アクチュエータによる高 粘度流体のマイクロ流路内移送

筆者らの研究グループが独自に開発したポン プレス・ドロップレット・チップでは、脱気さ れた PDMS チップの密閉空間(図1のケース ではR3) にトラップされた空気が PDMS に溶 解することでこの空間が負圧となり、これに よって生じる流動相充填リザーバ(図1のケー スではR1およびR2)との間の圧力差が油相 と水相をR3の方向へと駆動させる.油相,水 相ともに高分子ポリマーが溶解しているため, 両相は高粘度になっており、R3のオープントッ プをフィルムテープでシールしていた本研究の 開始当初は、R1とR2にそれぞれ充填された 油相と水相がマイクロ流路内へ流入していかな かった.しかし、上記密閉空間にグリッド状の 微細構造を付与することで空気と接触する PDMS 表面の有効面積が増大し、これによって

PDMS への空気溶解が促進され,結果として流体の流路内流動速度が上昇することを我々は先行研究において見いだしている(Murata et al., 2018; Nakatani et al., 2020). すなわち,このグリッド状の微細構造は,チップに内蔵された強力な吸引アクチュエータとして機能することが実証されており,本研究でも高粘度流体をマイクロ流路内にて流動させるために本アクチュエータ(PDMS Layer 2,図1)を利用した.

連続相には 1% (w/v) PVA 水溶液を用い, 分散相にはジクロロメタン,酢酸エチル,酢酸 メチルでそれぞれ調製した 1% (w/v) PLGA 溶 液を用いて水中油滴のポンプレス生成を試みた ところ,吸引アクチュエータが生み出す強い負 圧によって両高粘度流体をマイクロ流路内で流 動させることに成功した(図2).本来,疎水 性 PDMS 表面は油相で濡れやすいため,連続 相が油相となる水中油滴が生成しやすい.しか

Fig. 2 Influence of different organic solvents in the oil phase on the formation of oil-in-water droplets. The organic solvents used to prepare the 1% (w/v) PLGA solution were (a) dichloromethane, (b) ethyl acetate, and (c) methyl acetate, respectively. In the aqueous phase, a 1% (w/v) PVA aqueous solution was employed. Scale bar, 100 μm.

し、プラズマ処理によって PDMS 表面が親水 性に改質されたために、上記いずれの有機溶媒 を用いた場合も油相が連続相となった.油相に ジクロロメタン(図 2(a))、酢酸エチル(図 2(b))を用いた場合は、期待していた水中油滴 が得られたが、その生成レートには明確な差異 が見られた.連続相には同じ水溶液を用いてい るため、この生成レートの差異には油相の粘性 の違いが寄与していると考えられる.また、油 相に酢酸メチルを用いた場合は、油相と水相が 並流する現象が見られた(図 2(c)).油相と水 相の界面では、両相が相互溶解していると考え られ、油中水滴の形態を介さずにナノサイズの PLGA 粒子が生成している可能性があるため、 現在も引き続き検証を進めている.

水相中の PVA が水中油滴生成に与える影

PVA は、不混和性分散滴を安定化させる界 面活性作用を有することが知られている.重合 度の異なる PVA を種々試用したが、重合度 500 程度の PVA を使用したときが最も安定的 に水中油滴を生成させることができたため、以 降は重合度 500 の PVA を用いて全ての検討を 行った.

水相に溶解させる PVA ポリマーの重合度だ けでなく、その濃度も水中油滴の生成に大きな 影響を及ぼすことが予想されるため、油相には ジクロロメタンで調製した1% (w/v) PLGA 溶 液を用い、PVA 水溶液中の PVA 濃度を 0.5-10% (w/v)の間で変化させ水中油滴の生成を試みた (図3). PVA 濃度を 0.5% (w/v) としたときは 水中油滴の生成が見られなかったが、1%(w/v) 以上にすると水中油滴が生成した.しかし、 1% (w/v)の PVA 濃度では、水中油滴の生成レー トが 10 Hz 未満と低く, PVA 濃度の増大に伴い 水中油滴生成の安定性と生成レートが改善され ていった. しかし、10% (w/v)の PVA 濃度では、 粘度の増大によって連続相(水相)の流動速度 が低下し、安定的な水中油滴の生成が見られな かった.

Fig. 3 Influence of PVA concentration in the aqueous phase on oil-in-water droplet generation. PVA concentration: (a) 2% (w/v); (b) 5% (w/v); and (c) 10% (w/v). A common 1% (w/v) PLGA solution prepared in dichloromethane was used as the oil phase for (a), (b), and (c). Scale bar, 100 μm.

PVA 濃度を 5%(w/v)としたときの油中水 滴の生成レートと粒径の経時変化を調べたとこ ろ,水中油滴生成開始から 50 秒までは、生成 レートはおよそ 50 Hz と安定していたが、その 後、時間の経過とともに低下していった.この 生成レートの低下にもかかわらず、生成する水 中油滴の粒径は約 110 μ m(相対標準偏差、~ 3% (n = 100))と安定しており高い単分散性を 確認することができた.

3. 晶析化プロセス

マイクロ流路のクロスジャンクションで生成 した単分散水中油滴中に溶解している PLGA は, ESD 法と同様,油相と水相の溶媒の相互 溶解によって結晶化のプロセスを経ることが予 想される.図4(a)は,水中油滴生成開始から2 分後にマイクロ流体チップの回収リザーバR3 に集積された水中油滴の顕微鏡画像である.粒 径にばらつきが見られるが,時間的に早いタイ

Fig. 4 Microscopic images depicting the accumulation of oil-in-water droplets within the designated collection reservoir R3. Image in (a) was acquired 2 minutes subsequent to the initiation of droplet generation, whereas image in (b) was captured 30 minutes thereafter. Scale bar, 100 μm.

ミングで生成した水中油滴ほど溶媒の相互溶解 が進行しサイズが小さくなっていると考えられ る.図4(b)は、R3に集積されてから30分経 過した後の水中油滴の顕微鏡画像である.溶媒 同士の相互溶解が溶解度まで達し、粒子サイズ が均一になっている様子が確認され、その相対 標準偏差は~3%(n=50)であった.しかし、 PLGAが完全に結晶化しているかは現在のとこ ろ定かではなく、これらの粒子を乾燥させて検 証する必要がある.

4. 研究成果の総括

マイクロ流体チップに吸引アクチュエータを 付与することによって高分子ポリマーが溶解し た高粘度の流体をマイクロ流路内で流動させる ことが可能となり,流路クロスジャンクション にて単分散性の高い水中油滴をポンプレスで生 成させることに成功した.水相に溶解させた PVA は水中油滴の安定的生成にとって重要な 役割を果たしていることが見いだされ,重合度 500 の PVA を 2–5% (w/v) の濃度で使用する ことにより安定的に水中油滴が生成することを 見いだした. 脱気された PDMS マイクロ流体 チップは,真空パックして保存すると数週間後 に開封してもポンプレスドロップレットジェネ レーターとして機能することを既に確認してい る.したがって,本マイクロ流体チップを用い ることにより,必要に応じて PLGA 粒子を用 時調製することが可能であると考えられる.

チップ内の回収リザーバに集積した粒子の粒 径はおよそ40μmであった.油相と水相の相 互溶解が溶解度まで達している可能性があり, これが完全に結晶化された PLGA の最終的な 粒子サイズであるかは現在のところ不明であ り,本法によって目的とするナノサイズの PLGA 結晶が得られるか,今後検証していく予 定である.

参考文献

Cohen-Sela E., Chorny M., Koroukhov N., Danenberg H.D., Golomb G., A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles, Journal of Controlled Release, 133 (2009) 90–95.

https://doi.org/10.1016/j.jconrel.2008.09.073

- Esmaeili F., Atyabi F., Dinarvand R., Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method, Journal of Experimental Nanoscience, 2 (2007) 183–192. https://doi.org/10.1080/17458080701393137
- Lagreca E., Onesto V., Di Natale C., La Manna S., Netti P.A., Vecchione R., Recent advances in the formulation of PLGA microparticles for controlled drug delivery, Progress in Biomaterials, 9 (2020) 153–174.

https://doi.org/10.1007/s40204-020-00139-y

Makadia H.K., Siegel S.J., Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers, 3 (2011) 1377–1397.

https://doi.org/10.3390/polym3031377

- Mir M., Ahmed N., Rehman A.u., Recent applications of PLGA based nanostructures in drug delivery, Colloids and Surfaces B: Biointerfaces, 159 (2017) 217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038
- Murakami H., Kobayashi M., Takeuchi H., Kawashima Y., Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles, Powder Technology, 107 (2000) 137–143. https://doi.org/10.1016/s0032-5910(99)00182-5
- Murata Y., Nakashoji Y., Kondo M., Tanaka Y., Hashimoto M., Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator, Electrophoresis, 39 (2018) 504–511.

https://doi.org/10.1002/elps.201700247

- Nakatani M., Tanaka Y., Okayama S., Hashimoto M., A simplified PDMS microfluidic device with a built-in suction actuator for rapid production of monodisperse water-inoil droplets, Electrophoresis, 41 (2020) 2114–2121. https://doi.org/10.1002/elps.202000105
- Semete B., Booysen L., Lemmer Y., Kalombo L., Katata L., Verschoor J., Swai H.S., In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems, Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2010) 662–671. https://doi.org/10.1016/j.nano.2010.02.002
- Tanaka H., Yamamoto S., Nakamura A., Nakashoji Y., Okura N., Nakamoto N., Tsukagoshi K., Hashimoto M., Handsoff preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR, Analytical Chemistry, 87 (2015) 4134– 4143. https://doi.org/10.1021/ac503169h
- Xu Y., Kim C.-S., Saylor D.M., Koo D., Polymer degradation and drug delivery in PLGA-based drug–polymer applications: a review of experiments and theories, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105 (2017) 1692–1716.

https://doi.org/10.1002/jbm.b.33648

外部発表成果

論文発表

 Ogo A., Okayama S., Nakatani M., Hashimoto M., CO₂-laser-micromachined, polymer microchannels with a degassed PDMS slab for the automatic production of monodispersed waterin-oil droplets, Micromachines, 13 (2022) 1389. https://doi.org/10.3390/mi13091389

口頭・ポスター発表

- 太田 和孝,橋本 雅彦, "PDMS 製マイクロ 流体チップの特性を活かしたポンプレスド ロップレット調製法",日本分析化学会第 71年会(Okayama, Sep. 14–16, 2022) YB1076.
 https://confit.atlas.jp/guide/event/jsac71nenkai/subject/1P326/advanced>
- 太田 和孝,橋本 雅彦,"ステップ構造を有 した PDMS マイクロ流体チップによるポン プレスドロップレット調製法",日本分析化 学会第 72 年会(Kumamoto, Sep. 13–15, 2023) 2P-051. < https://confit.atlas.jp/guide/event/ jsac72nenkai/subject/2P-Y164/advanced>

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 134-139 /https://doi.org/10.14356/hptf.21120

HPTF21120

多様な燃焼灰粒子の高温付着性を制御する薬剤の開発 Investigation of Additives to Control Ash Adhesion at High Temperatures

研究代表者 Research leader: 堀口 元規 Genki HORIGUCHI

東京農工大学大学院グローバルイノベーション研究院 助教 Graduate School of Global Innovation, Tokyo University of Agriculture and Technology, Assistant Professor (現 国立研究開発法人産業技術総合研究所 研究員) (Currently: National Institute of Advanced Industrial Science and Technology, Researcher) E-mail: g.horiguchi@aist.go.jp

抄 録

高温場における灰粒子の付着は、燃焼プラントの高効率かつ安定的な運転を阻害する問題である. 高温付着性の主たる要因は、灰中のアルカリ金属が形成する低融点成分の溶融である.付着抑制の ための手法として薬剤の添加があり、これは灰の化学組成を調整することで溶融を抑制することを 狙っている.ただし、灰の組成は多様であり、組成調整のみに依存した付着抑制手法には限界があ る.本研究では、灰粉体層中に空隙を形成することで物理的に灰付着層の強度を低下させられる点 に着目し、組成調整と空隙形成の双方の効果を有する薬剤を開発することを目指した.薬剤成分と して、アルカリ金属由来の低融点成分形成の抑制に有効なアルミニウムを選定した.さらに、ガス 発生による空隙形成が期待できるアルミニウム塩として、硫酸アルミニウム水和物を選定した.硫 酸アルミニウム添加により、900°Cにおける粉体層強度を最大 69% 減少させることに成功した.

ABSTRACT

Ash particle adhesion at high temperatures is a serious problem in commercial combustion plants. Melting of compounds containing alkali metals is one of the causes of particle adhesion at high temperatures. In this study, an additive has been developed to control ash adhesion at high temperatures. An Al-based additive has been used to suppress the formation of compounds with low melting points in ashes. Furthermore, it has been expected that gases released from the additive during elevating temperatures can form voids in the ash powder bed, resulting in a decrease in the tensile strength of the powder bed. It has been found that the use of aluminum sulfate as an additive effectively decreased adhesion through composition control and void formation.

研究背景と目的

燃焼は,発電や廃棄物処理などに用いられる 重要なプロセスである.石炭やバイオマスなど の固体燃料には灰分が含まれ、これは燃焼プロ セスで灰粒子となる. 灰粒子は、燃料プラント 内部のような高温条件(500~1000℃)で高 い付着性を示すことがある (Lachman et al., 2021; Kleinhans et al., 2018). その結果, 灰粒子 がプラント内部の伝熱管などに付着する. 付着 層の形成は伝熱を阻害し、エネルギー変換効率 の低下を招く.また、付着面から伝熱管の腐食 を起こすこともある. さらに, 流動層燃焼炉で は、流動媒体に灰が付着し大きな塊を形成する ことで、流動不良や配管の閉塞を引き起こす可 能性がある.このように、高温雰囲気下におけ る灰付着は、燃焼プロセスの運転に悪影響を与 える、プラントの安定かつ高効率運転のために は,灰付着を抑制する技術の確立が求められる.

灰付着の主たる原因は, 高温条件における灰 粒子の溶融である. 灰粒子の一部が溶融して高 い接着性を示す.特に,灰中のナトリウムやカ リウム, リンが, 融点の低い化合物を形成する ため、これらが付着の原因成分と考えられてい る (Tang et al., 2022). 特に, ナトリウムやカリ ウムに代表されるアルカリ金属は石炭灰に含ま れることから、石炭灰の高温付着現象を考察す る上では避けては通れない成分である.近年で は資源量の観点から,石炭の中でも低品位な石 炭の活用に注目が集まっている.低品位炭の場 合, アルカリ金属を多く含むことがあり, 灰の付 着が深刻化することがある. さらに、持続可能 な社会の実現に向け, バイオマス燃料の活用が 注目されているが,やはり灰の付着が問題となっ ている、バイオマス燃焼灰は、石炭灰よりも多 くのアルカリ金属を含むことがある.以上のよ うな背景から、特にアルカリ金属が原因となる 灰付着現象は注目のトピックスであり、付着を 抑制する手法の確立は社会的ニーズがある.

付着抑制のための手法として,薬剤の利用が ある.外部から薬剤を加えて灰の組成を調整す ること、または灰中の成分(特に低融点成分) と薬剤の間で反応を引き起こすことで、灰の溶 融を抑制することが狙いである.すでにいくつ かの薬剤が報告されている(Liu et al., 2022; Fuller et al., 2019).一方で、灰の組成は多様で あり、組成に応じて適切な薬剤を選択しないと、 付着抑制を十分に行えなくなることや、かえっ て付着を深刻化させてしまうことが起こりう る.そのため、組成制御以外の手法も取り入れ た付着抑制技術の確立が求められる.

筆者は過去に、石炭灰や下水汚泥燃焼灰の高 温付着性を評価し, その付着抑制のための薬剤 の探索に取り組んだ. その中で, アルミナナノ 粒子(粒子径 10 nm)が特に優れた付着抑制効 果を示すことを見出した(Horiguchi et al., 2018; 2022). アルミニウム成分は、アルカリ金属を 含む低融点成分と反応し,高融点の化合物へと 変化させる。その結果、アルカリ金属由来の高 温付着性を効果的に抑制できる.加えて、用い たアルミナナノ粒子は充填性が悪く、ナノ粒子 添加することで灰粉体層の充填性を低下させる ことができる.結果として、灰粉体層の強度が 低下し、付着を抑制できる. すなわち、アルミ ナナノ粒子の付着抑制効果は、組成制御と充填 性低下の二つで説明でき,特に後者は組成に依 存しないため、組成が変化し組成制御効果が弱 まることが予想される状況でも, 付着抑制効果 を発揮できる.ただし,ナノ粒子は高価かつハ ンドリングが難しいため、アルミナナノ粒子と 同様の効果を示す添加剤の開発が求められる.

本研究では,組成制御と充填性低下の二つの 効果を兼ね備えた薬剤の開発を目標とした.薬 剤成分として,アルカリ金属由来の付着を抑制 できるアルミニウム成分に着目した.充填性低 下については,昇温過程で薬剤から揮発分が生 じれば粉体層内部に空隙を形成でき,灰粒子の 充填性が低下すると予測した.このような仮説 に基づき,アルミニウム系薬剤の開発を行った. 灰サンプルとして,組成は単純だが燃焼灰の高 温付着性を模擬したモデル化合物を用いた (Horiguchi et al., 2020; 2021). 研

究

助

研究方法

1. モデル化合物の調製と薬剤の添加

灰のモデル化合物は,過去の研究と同様に調 製した.カオリン粒子(関東化学)とアルカリ 金属前駆体のシュウ酸カリウム一水和物または シュウ酸ナトリウム(いずれも富士フィルム和 光純薬),イオン交換水を自転公転ミキサーに て混合し,スラリー化した.得られたスラリー をるつぼに移し,電気炉を用いて120°Cにて 12時間乾燥させた後,900°Cで1時間熱処理 した.熱処理後,粉砕および分級し,モデル化 合物を得た.

得られたモデル化合物に,アルミニウム系薬 剤を所望量加え,乾式混合して薬剤添加サンプ ルを調製した.

2. 粉体層強度測定

モデル化合物または薬剤添加したモデル化合物の高温付着性を、粉体層強度として定量評価した。粉体層強度の測定は、図1に示す吊り下 げ型粉体層強度測定装置を用いて行った (Kamiya et al., 2002).2分割型の石英製セル(直 径 50 mm)にサンプルを充填し、おもりを載 せ与圧 2.1 kPaにて圧密し粉体層を形成させた。 900°Cまで昇温速度 10°C/minで加熱し、30分 保持した後、900°C条件で粉体層の引張試験を 行った。破断に要した力を破断面積で割った値 を粉体層強度と定義した。

Stress sensor Motor Motor Movable cell Fixed cell

Fig. 1 Schematic viewing of the split-type tensile strength tester.

3. キャラクタリゼーション

昇温過程における重量および体積変化を, TG-DTA および TMA により評価した.昇温速 度は 10°C/min とした. TMA では,所定量 (W_B) のサンプルをアルミナ容器に充填して 900°C まで昇温しながら粉体層高さ変化を測定した. この結果から 900°C における粉体層体積 (V_B) を決定でき,以下の式により粉体層空隙率 ε を 測定した.

$$\varepsilon = \frac{V_{\rm B} - V_{\rm P}}{V_{\rm B}} = 1 - \frac{W_{\rm B} / \rho_{\rm P}}{V_{\rm B}} \tag{1}$$

ここで, ρ_Pは粒子密度であり, 乾式密度計に より測定した.

研究成果

1. 灰のモデル化合物

実際の燃焼灰は組成が複雑で、様々な付着要 因が考えられる.本研究では、薬剤添加による 付着抑制効果のメカニズム検証を容易にするた めに、灰のモデル化合物を用いた.灰のモデル 化合物は、母材粒子と高温付着性を誘発する成 分(アルカリ金属、リン)を混合・焼成するこ とで調製される.本研究では、実際の燃焼灰に ケイ素(Si)とアルミニウム(Al)がよく含ま れることに着目し、これらを含むカオリン粒子 (Al-Siと表記)を母材として用いた.Al-Siに ナトリウム(Na)やカリウム(K)を加えたモ デル化合物(Na-Al-Si, K-Al-Siと表記)を調 製した.調製したモデル化合物の物性を表1に

 Table 1 Physical and chemical properties of model compounds.

	Concentration of alkali metal (wt%)	Porosity of powder bed	Tensile strength at 900°C (kPa)
Al–Si	-	0.82	0.92
Na–Al–Si	1.5	0.74	10.1
K–Al–Si	12.4	0.73	11.5

研

究

助

成

Fig. 2 Tensile strengths of powder beds as a function of the porosity of the powder beds. The plots and curves relate to the experimental data (K–Al–Si model compound) and the Rumpf equation, respectively.

示した. 高温条件における粉体層強度は約 10 kPa で, この値は過去に分析した石炭燃焼灰 や下水汚泥燃焼灰の強度と同等であった. 燃焼 灰の高温付着性を模擬したモデル化合物の合成 に成功した.

2. 強度低減効果の見積もり

溶融抑制と充填性低下による付着抑制効果の 推算を行った.本研究では,付着性を粉体層強 度として定量評価している.粉体層強度σは, 以下に示す Rumpf 式で表される.

$$\sigma = \frac{1 - \varepsilon}{\varepsilon} \frac{F}{x^2} \tag{2}$$

ここで、 ε は粉体層空隙率、xは粒子径、Fは 粒子間にはたらく付着力である。今回開発する 薬剤は、薬剤からのガス発生による空隙形成を 期待しており、 ε が増加すると考えられる。ま た、溶融抑制により液架橋力が低下することを 期待しており、Fが低下すると考えられる。空 隙率と強度の関係を図2に示した。付着力Fが変化しない場合でも、空隙率を0.73から0.8 まで増加させることで、強度が32%減少する ことが示された。空隙率増加と溶融抑制(液架 橋力低下)の効果を組み合わせて、空隙率が0.8 まで増加し付着力を50%低下させることがで きれば、強度を66%も減少させることが可能

Fig. 3 TG curve for the Al₂(SO₄)₃ 14~18 water performed under air atmosphere. Heating rate was 10°C/min.

と示された.溶融抑制と空隙形成の双方を組み 合わせた薬剤開発の有効性を示すことができ た.

3. 薬剤の選定

アルミニウム系の昇温過程でガスを放出する 薬剤の選定を行った.アルミニウム塩の中でも, 特に硫酸アルミニウムの14-18水和物(富士 フィルム和光純薬)に注目した.硫酸アルミニ ウムのTG測定結果を図3に示した.900°Cま で昇温することで82%も重量減少することを 確認した. 灰粉体層への硫酸アルミニウムの添 加により,ガス発生効果が期待されたことから, 研

Fig. 4 Tensile strength of K–Al–Si and Na–Al–Si model compounds with Al additive.

Fig. 5 Porosity of powder bed of K–Al–Si and Na–Al–Si model compounds with Al additive.

本研究で薬剤として用いることとした.

4. 薬剤の効果検証

硫酸アルミニウムを 10 wt% 添加したモデル 化合物の強度を図4に示した. Na-Al-Si モデ ル化合物の強度を46%, K-Al-Si モデル化合物 の強度を69% 減少させることに成功した. 空 隙率を図5に示した. 空隙率は0.79 まで増加 しており,期待された通りガス発生による空隙 形成効果が働いていると考えられた. 一方で, この空隙率増加から予測される強度減少効果は 約30% であり,実際には溶融抑制による液架 橋力低下効果も働いていると考えられる. ただ し,この効果は Na-Al-Si と K-Al-Si で異なり, K系に対する Al 添加の方が液架橋力低下効果 は大きいことが示唆された.

参考文献

- Fuller A., Omidiji Y., Viefhaus T., Maier J., Scheffknecht G., The impact of an additive on fly ash formation/transformation from wood dust combustion in a lab-scale pulverized fuel reactor, Renewable Energy, 136 (2019) 732–745. https://doi.org/10.1016/j.renene.2019.01.013
- Horiguchi G., Beppu Y., Yoshinaga K., Kamiya H., Okada Y., Mechanistic determination of the role of aluminum in particle adhesiveness at high temperatures induced by sodium and potassium using a synthetic ash strategy, ACS Sustainable Chemistry & Engineering, 9 (2021) 3727–3734.

https://doi.org/10.1021/acssuschemeng.0c08483

- Horiguchi G., Fujii R., Beppu Y., Kamiya H., Okada Y., Understanding the mechanism of particle adhesion in high-temperature combustion induced by sodium and potassium: use of a synthetic ash strategy, Industrial & Engineering Chemistry Research, 59 (2020) 16185– 16190. https://doi.org/10.1021/acs.iecr.0c02870
- Horiguchi G., Fujii R., Yamauchi Y., Okabe H., Tsukada M., Okada Y., Kamiya H., Toward stable operation of coal combustion plants: the use of alumina nanoparticles to prevent adhesion of fly ash, Energy & Fuels, 32 (2018) 13015–13020.

https://doi.org/10.1021/acs.energyfuels.8b03043

- Horiguchi G., Ito M., Ito A., Kamiya H., Okada Y., Controlling particle adhesion of synthetic and sewage sludge ashes in high temperature combustion using metal oxide nanoparticles, Fuel, 321 (2022) 124110. https://doi.org/10.1016/j.fuel.2022.124110
- Kamiya H., Kimura A., Yokoyama T., Naito M., Jimbo G., Development of a split-type tensile-strength tester and analysis of mechanism of increase of adhesion behavior of inorganic fine powder bed at high-temperature conditions, Powder Technology, 127 (2002) 239–245. https://doi.org/10.1016/s0032-5910(02)00117-1
- Kleinhans U., Wieland C., Frandsen F.J., Spliethoff H., Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior, Progress in Energy and Combustion Science, 68 (2018) 65–168. https://doi.org/10.1016/j.pecs.2018.02.001
- Lachman J., Baláš M., Lisý M., Lisá H., Milčák P., Elbl P., An overview of slagging and fouling indicators and their applicability to biomass fuels, Fuel Processing Technology, 217 (2021) 106804. https://doi.org/10.1016/j.fuproc.2021.106804

Liu Z., Jin J., Zheng L., Zhang R., Wang Y., He X., Kong S., Zhai Z., Controlling the ash adhesion strength of zhundong high-calcium coal by additives at high temperature, Fuel, 323 (2022) 124342. https://doi.org/10.1016/j.fuel.2022.124342

Tang C., Pan W., Zhang J., Wang W., Sun X., A comprehensive

外部発表成果

口頭・ポスター発表

 Horiguchi G., Okada Y., Kamiya H., "Controlling particle adhesion at high temperatures: the use of nanoparticles as additives", The 7th International Conference on the Characterization and Control review on efficient utilization methods of high-alkali coals combustion in boilers, Fuel, 316 (2022) 123269. https://doi.org/10.1016/j.fuel.2022.123269

of Interfaces for High Quality Advanced Materials and the 57th Summer Symposium on Powder Technology (Fuji-yoshida, Japan, Nov. 16–18, 2022) P-D-06.

 2. 奥泉 達也, 堀口 元規, 岡田 洋平, 神谷 秀博, "化学的および物理的効果による燃焼灰の高 温付着性制御", 化学工学会第84回秋季大 会(Fukuoka, Sep. 11–13, 2023) S315.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 140–145 /https://doi.org/10.14356/hptf.21121

HPTF21121

ジオポリマーを用いる重金属の固定化プロセスの構築 Development of a Heavy Metal Immobilization Process Using

Geopolymers

研究代表者 Research leader: 松岡 光昭 Mitsuaki MATSUOKA 関西大学環境都市工学部 准教授 Faculty of Environmental and Urban Engineering, Kansai University, Associate Professor E-mail: matsuoka@kansai-u.ac.jp

抄 録

石炭火力発電所からの産業副産物であるフライアッシュを用いたジオポリマーは、硬化過程におい て重金属を固定化する働きがあり、環境浄化分野での活用が期待される.フライアッシュの反応性 が低く、硬化には長時間の加熱養生が必要なことが実用上の課題である.本研究では、フライアッ シュ粒子に対して機械的処理を施して緩和な養生条件でジオポリマーを作製し、Pb²⁺固定化能にお よぼすフライアッシュへの機械的処理の影響を検討した.機械的処理により微細化されたフライ アッシュは比表面積の増大と結晶性の低下により、ジオポリマーの硬化に必要な Al³⁺ および Si⁴⁺ イオンの溶出性が促進された.これにより、ジオポリマーが室温かつ短時間で硬化でき、室温養生 であっても加熱養生と同等の高い Pb²⁺固定化能を示した.フライアッシュ粒子への機械的処理が ジオポリマーの硬化反応性だけでなく、重金属固定化能にも寄与することが示唆された.

ABSTRACT

Geopolymers using coal fly ash, an industrial byproduct from coal-fired power plants, have the ability to immobilize heavy metals during the curing process, and are expected to be used in the field of environmental remediation. The low reactivity of coal fly ash and the long curing time required for curing are practical issues. In this study, geopolymers were prepared by the mechanical treatment of coal fly ash particles under relaxed curing conditions, and the effect of the mechanical treatment on the Pb²⁺ immobilization ability of coal fly ash was investigated. The mechanically treated coal fly ashes were subjected to the mechanical treatment, and the increase in specific surface area and the decrease in crystallinity promoted the leachability of Al³⁺ and Si⁴⁺ ions, which are necessary for hardening of the geopolymer. As a result, the geopolymer could be cured at room temperature and in a short time, and the room temperature curing showed the same high Pb²⁺ immobilization capacity as that of the heat curing. It is suggested that the mechanical treatment of coal fly ash particles contributes not only to the curing reactivity of the geopolymer but also to its heavy metal immobilization ability.

研究背景と目的

石炭燃焼飛灰(フライアッシュ)は、火力発 電所からの産業副産物であり、国内の年間発生 量は800万トン以上にのぼる.フライアッシュ はSiO₂とAl₂O₃を主成分とする粒子表面を安 定なガラス層に覆われた球形の微粒子であり、 セメント・コンクリートやモルタルの施工時の 流動性の向上のために土木・建築分野で利用さ れている.近年、このフライアッシュを用いた ジオポリマーがカーボン・ニュートラルの実現 に向けた次世代のコンクリートとして期待され ている.

ジオポリマーは、アルミノケイ酸塩とアルカ リ溶液、ケイ酸水溶液が脱水縮重合反応して生 成される 無機 縮重 合体である (Davidovits, 1989). 従来のセメント・コンクリートは、セ メント製造時においてクリンカーの焼成工程に より大量の二酸化炭素を排出する.ジオポリ マーを用いたコンクリートはセメントを全く用 いないため、セメント製造時の二酸化炭素排出 量が削減できる.ジオポリマーは圧縮強度や耐 酸性に優れ、硬化過程において重金属類等の有 害金属を固定化する働きもあることから,酸性 環境下や環境浄化分野での用途拡大も期待され る. ジオポリマーの原料としてフライアッシュ の検討が進められているが、フライアッシュの 反応性が低いため、硬化にあたり長時間の加熱 養生が必要なことが実用上の課題である.

この課題を解決するため、機械的処理により フライアッシュ粒子を微細化することや、メカ ノケミカル処理することにより、硬化反応性を 促進する研究が報告されてきた(Kumar et al., 2011; Kato et al., 2019). 我々はフライアッシュ 粒子の表面活性化によるジオポリマーの硬化反 応性促進と強度向上を報告してきた(Matsuoka et al., 2019). 各種粉砕手法を用いてフライアッ シュ粒子を処理すれば、微細化されたフライ アッシュ粒子の比表面積が増大することにより Al³⁺および Si⁴⁺ イオンの溶出性が促進され、従 来よりも緩和な養生条件からジオポリマーが硬 化する.ジオポリマーの硬化過程において, Pb やZnなどの重金属がジオポリマーの構造内に 固定化されることが知られている.ジオポリ マーの硬化反応性には, Al³⁺およびSi⁴⁺イオン の溶出性が大きく影響するが,フライアッシュ の反応性と硬化過程の重金属の固定化能との関 係は明らかになっていない.ジオポリマーの重 金属固定化プロセスの構築には,室温かつ短期 間の緩和な養生条件でのジオポリマーの硬化反 応性だけでなく,その際の重金属固定化能を調 べることが重要である.

本研究では,緩和な養生条件でのジオポリ マーを用いた重金属固定化プロセスの構築を目 的として,フライアッシュ粒子に対して機械的 処理を施して緩和な養生条件(室温,短期間) で硬化したジオポリマーを作製し,Pb²⁺固定化 能におよぼす養生条件の影響を検討した.

研究方法

フライアッシュへの機械的処理とジオポ リマーの作製

本研究では、原料粉体として JIS 試験用フラ イアッシュ (JIS Test Powder 1, Class 10)を用 いた.フライアッシュ粒子に対して、遊星ボー ルミルを用いて粉砕メディアを \$10 mm ジルコ ニアボール、回転数を 600 rpm、処理時間を 0 ~180 min の条件下で微粉砕処理を施した.得 られた微粉砕フライアッシュ粒子に対して各種 粉体特性を評価した.微粉砕フライアッシュ 0.1 gを遠沈管に投入し、30 wt% NaOH 水溶液 と混合して 24 時間浸とう後、ろ過した.ろ液 に対して ICP-OES による濃度測定を行い、Al³⁺ および Si⁴⁺ イオンの溶出特性を評価した.

微粉砕フライアッシュ 2.0gに対して、ケイ
酸ナトリウム溶液(NaOH:水ガラス:純水=3:2:6(質量基準))1.5gとPb(NO₃)₂0.016g(=Pb²⁺10mg)を加え、直径11mm、高さ40mmの円柱型容器に投入して混錬した。室温(20°C)および加温(70°C)条件下で7、28日
養生により硬化体を作製した。得られたジオポ

リマー硬化体に対して,SEMによる形態観察, XRDによる相同定,オートグラフによる圧縮 強度試験を行い評価した.

2. ジオポリマーの重金属固定化能評価

Pb²⁺を固定化したジオポリマーをメノウ乳鉢 で粉砕し,300 μm 以下にふるい分けした.得 られた粉体とCH₃COOH 溶液を固液比が 0.1g:10 ml になるよう遠沈管に投入し24 h 振 とうした.振とう後,重金属溶出量をICP-OES により測定し,ジオポリマーの重金属固定化能 を評価した.

研究成果

1. フライアッシュ粒子の粉体特性におよぼ す機械的処理の影響

遊星ボールミルを用いて機械的処理を施した フライアッシュの SEM 写真を図1に示す.処 理時間の増加に伴い粒子形状が球状から変化し ており,微粉砕されている様子が確認できた. 比表面積は未処理フライアッシュの 2.2 m²/g か ら 180 min 処理では 5.9 m²/g まで増加した.

機械的処理前後のフライアッシュ粒子に対し て、XRD 分析による相同定, ICP-OES による 金属イオン溶出量をそれぞれ順に図 2, 図 3 に 示す.図 2 より,粉砕処理時間の増加により Quartz,Mullite ともに結晶性が低下し,非晶質 化が進行したことがわかる.フライアッシュか らの Al³⁺ および Si⁴⁺ イオンの溶出特性を図 3 に示す. 粉砕処理時間の増加とともにいずれの イオンも溶出量が増加した.処理時間 180 min の微粉砕フライアッシュからは、Al³⁺イオンが 約 250 mg/L, Si⁴⁺ イオンが約 450 mg/L 程度溶 出した.未処理のフライアッシュに対して、そ れぞれ順に 3.0 倍. 3.6 倍の溶出量を示した. フライアッシュに対して機械的処理を施すこと により,フライアッシュ粒子の微細化が進行し, 比表面積が増加するとともに活性な表面が生成 し、Al³⁺および Si⁴⁺ イオンの溶出性が促進され ると考えられる. Al³⁺ および Si⁴⁺ イオンはジオ ポリマーのネットワーク形成に必要であるた め,フライアッシュからの Al³⁺ イオンおよび Si⁴⁺イオン溶出性を促進することにより、ジオ ポリマーの硬化反応性が向上できると考えられ る.

Fig. 1 SEM images and specific surface area of coal fly ash milled by various comminution time.

Fig. 2 XRD patterns of coal fly ash milled by various comminution time.

研

究

助

成

2. ジオポリマーの圧縮強度および重金属固 定化能

微粉砕フライアッシュを用いて室温(20°C) -7日養生により得られたジオポリマー硬化体 の圧縮強度を図4に示す.微粉砕処理時間の増 加に伴い,非加熱かつ短期間の養生であっても 圧縮強度が増加した.フライアッシュに微粉砕 処理を施すことにより硬化反応性が向上し,加 熱養生の圧縮強度には劣るものの,硬化の初期 段階から強度を発現すると考えられる.コンク リートの設計基準強度(短期30年)の18 MPa には達していなかったが,未処理のフライアッ シュでは十分硬化しない養生条件であっても, 微粉砕フライアッシュを用いることによりジオ ポリマー硬化体が得られた.ジオポリマーの硬

Fig. 3 Leaching amount of Al³⁺ and Si⁴⁺ ions from coal fly ash milled by various comminution time.

Fig. 4 Compressive strength of geopolymer synthesized from various comminution time of coal fly ash cured at 20°C for 7 days.

化反応性だけでなく,重金属固定化能におよぼ すフライアッシュへの機械的処理の影響を調べ るため,微粉砕フライアッシュを用いたジオポ リマーを各種養生条件で作製し,Pb²⁺固定化能 を調べた.

70°C-7 日養生したジオポリマーの Pb²⁺ 固定 化率を図5に示す.70°C の加温養生では,短 時間の養生期間であってもフライアッシュ粒子 の処理時間によらず98% 程度の高い Pb²⁺ 固定 化率を示した.加熱によりジオポリマーの硬化 反応が十分に進む養生条件であったため,未処 理のフライアッシュであっても高い Pb²⁺ 固定 化率を示したと考えられる.

Fig. 5 Immobilization ratio of Pb²⁺ using geopolymer synthesized from various comminution time of coal fly ash cured at 70°C for 7 days.

Fig. 6 Immobilization ratio of Pb²⁺ using geopolymer synthesized from various comminution time of coal fly ash cured at 20°C for 7 and 28 days.

室温(20℃) - 7.28 日養生したジオポリマー の Pb²⁺ 固定化率を図6に示す。20°C-7 日養生 では、180 min 処理フライアッシュを用いたジ オポリマーは硬化したが、未処理フライアッ シュと 60 min 処理フライアッシュを用いたジ オポリマーは硬化しなかった. これは長時間の 粉砕処理により、フライアッシュの Al³⁺ イオ ンおよび Si⁴⁺ イオン溶出性が未処理および 60 min 処理フライアッシュのものより著しく 向上したためと考えられる. 20°C-28 日養生で は、フライアッシュの処理時間の増加にともな い Pb²⁺ 固定化率は向上した. フライアッシュ への微粉砕処理に伴う金属イオン溶出量の増加 によりフライアッシュの硬化反応が促進される だけでなく、ジオポリマー内部に化学結合によ り取り込まれる重金属の固定化にも効果がある ことが示唆される.同じ180 min 処理フライ アッシュを用いたジオポリマー硬化体であって も、20°C-7 日養生では Pb²⁺ 固定化率は 80% で あったが、20°C-28 日養生では Pb²⁺ 固定化率 は95%程度まで向上した。短い養生期間では、 ジオポリマーの硬化反応が十分に起こっていな いためであると考えられる. 微粉砕フライアッ シュを用いた場合、室温養生であっても十分な 養生期間があれば、加温養生と同程度の高い Pb²⁺ 固定化能を発現することがわかった.

3. まとめ

本研究では、機械的処理により微粉砕して反応性を高めたフライアッシュを用いてジオポリマー硬化体を作製し、ジオポリマーの Pb²⁺ 固

定化能におよぼす粉砕条件および養生条件の影響を検討した. 微粉砕フライアッシュを用いて, 室温養生であっても加温養生と同程度の高い Pb²⁺固定化能を示した.フライアッシュへの 機械的処理がジオポリマーの硬化反応性だけで なく,重金属固定化能の向上に有効であると考 えられる.今後は,Pb以外にもジオポリマー の重金属カチオン固定化能におよぼすフライ アッシュへの機械的処理の影響を調べ,その固 定化メカニズムを明らかにする.フライアッ シュの粉体特性や反応性におよぼす機械的処理 の影響はまだ明らかになっていないことも多 く,粉砕条件と養生条件を最適化することによ り,室温短期間養生でのジオポリマーを用いた 重金属固定化プロセスの構築が期待できる.

参考文献

- Davidovits J., Geopolymers and geopolymeric materials, Journal of thermal analysis, 35 (1989) 429–441. https://doi.org/10.1007/BF01904446
- Kato K., Xin Y., Hitomi T., Shirai T., Surface modification of fly ash by mechano-chemical treatment, Ceramics International, 45 (2019) 849–853.

https://doi.org/10.1016/j.ceramint.2018.09.254

Kumar S., Kumar R., Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer, Ceramics International, 37 (2011) 533–541. https://doi.org/10.1016/j.ceramint.2010.09.038

研

究

助

成

Matsuoka M., Yokoyama K., Okura K., Murayama N., Ueda M., Naito M., Synthesis of geopolymers from mechanically activated coal fly ash and improvement of their mechanical properties, Minerals, 9 (2019) 791–801. https://doi.org/10.3390/min9120791

外部発表成果

口頭・ポスター発表

 田中 威大, 安見 洸亮, 松岡 光昭, 村山 憲弘, 内藤 牧男, "産業副産物を用いたジオポリ マー硬化体の硬化反応性におよぼす各種粉 砕処理の影響",化学工学会第53回秋季大 会(長野, Sep. 14–16, 2022) BB219.

 Matsuoka M., Tanaka T., Murayama N., Naito M., "Effect of grinding process of coal fly ash on curing reaction of geopolymer from industrial by-products", The 7th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials, (Yamanashi, Nov. 16–18, 2022) 1-II-B-14.

 松岡光昭,"粒子表面活性化による産業副 産物からの高強度ジオポリマー硬化体の開 発",資源・素材学会,資源・素材 2023, 粉体精製工学部門委員会・企画講演(愛媛, Sep. 12-14, 2023) 1701-05-05, 招待講演.

4. 前口 侑唯人,松岡 光昭,村山 憲弘,"ジオポリマーの重金属固定化能におよぼすフライアッシュ粒子への微粉砕処理の影響",化学工学会福井大会2023(福井, Dec. 8, 2023) C220.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 146–150 /https://doi.org/10.14356/hptf.21122

HPTF21122

高結晶な酸窒化物微粒子のフラックス合成

Flux Growth of High Crystallinity Oxynitride Nanoparticles

研究代表者 Research leader: 鱒渕

友治 Yuji MASUBUCHI

北海道大学大学院工学研究院 准教授 Graduate School of Engineering, Hokkaido University, Associate Professor E-mail: yuji-mas@eng.hokudai.ac.jp

抄 録

ペロブスカイト型酸窒化物 BaTaO₂N は可視光応答光触媒として応用が期待される化合物である. 本研究では,酸窒化物の微粒子化と結晶性向上を目的に窒素含有 BaCN₂ フラックスを用いた酸窒 化物微粒子の合成条件と結晶性および微細組織の関係を検討した.BaCN₂ と Ta₂O₅の混合粉を N₂ 雰囲気中 750°C 以上の温度で加熱することで,BaTaO₂N を得た.BaTaO₂N 単一相を得るには Ba 過 剰の BaCN₂/Ta₂O₅ 組成の原料が必要だった.NH₃ を用いた合成手法では結晶子径が 40 nm だった BaTaO₂N は,BaCN₂ を用いた本研究の手法では結晶子径が 100 nm まで増加し,結晶性の向上が確 認できた.また生成物にはペロブスカイト型構造の(111) 面と(100) 面が発達した切頂八面体型の 粒子が得られた.BaCN₂ フラックスを用いることで,特定の結晶面が発達した高結晶性の酸窒化 物微粒子の合成に成功した.

ABSTRACT

Highly crystalline perovskite-type oxynitride $BaTaO_2N$ was prepared by using low-temperature melting $BaCN_2$ flux and Ta_2O_5 . The Ba-rich starting composition of the $BaCN_2/Ta_2O_5$ mixture was required to synthesize the single phase of $BaTaO_2N$ powders, because of evaporation of a small part of $BaCN_2$ during the heating in N₂ atmosphere. The crystallite size of the $BaTaO_2N$ obtained from $BaCN_2/Ta_2O_5$ was 100 nm, which was larger than that obtained by ammonolysis reaction. Truncated octahedral particles consisting of (111) and (100) planes were obtained in the products. By using the $BaCN_2$ flux, highly crystalline $BaTaO_2N$ fine particles were obtained.

研究背景と目的

金属酸化物や窒化物などの無機材料の多く は,複数の金属を組み合わせることで結晶構造 や電子状態を制御し,その機能性の向上が図ら れている.従来の無機材料に対して,複数の陰 イオンを組み合わせることで機能性の向上や新 規機能性が得られる複合アニオン化合物に近年 注目が集まっている¹¹¹.とくに酸化物イオンと 窒化物イオンを組み合わせた金属酸窒化物は両

者のイオン半径が近いことから金属酸化物に類 似の結晶構造をとるものの,陰イオンの電気陰 性度や金属との結合性が異なることから金属酸 化物では得ることができない機能性が生じる. SrTaO₂Nや BaTaO₂Nに代表されるペロブスカ イト型酸窒化物では,Taイオンの周りでO/N が形成する局所的な cis型配置に起因する強誘 電性が報告されており,cis型アニオン配置が 高温まで保たれることから高温用途のコンデン サ材料などへの応用が検討されている^{[2],[3]}.

TiO,などの酸化物光触媒はその大きいバン ドギャップのために、紫外光しか吸収できない ことが課題のひとつである.一方で、窒素が酸 素よりも小さな電気陰性度をもつことから、両 者を含む金属酸窒化物は、対応する酸化物に比 べて狭いバンドギャップを形成し、可視光応答 性の光触媒が得られる場合がある. このような 可視光応答光触媒は、水の直接分解や有害物質 の分解除去など、環境低負荷な社会を実現する ために非常に重要な材料である. これら光触媒 の活性向上のためには、微粒子化による比表面 積の増加だけでなく、その結晶性の向上も必要 になる.一般に無機材料の合成温度を上げると 結晶性は向上するが、同時に粒成長も進むため 比表面積は減少する.酸窒化物光触媒において も高結晶化と微細化を両立する合成手法の開発 が求められている.

酸窒化物の低温合成と結晶性向上を目的に塩 化物などの低融点フラックスを用いる合成手法 が知られているが、フラックス成分の生成物へ の混入が避けられず、酸窒化物合成に最適なフ ラックスが求められていた.申請者のグループ は、窒素を含有する BaCN₂が 910°C で融液を 形成し、酸窒化物のフラックスとして機能する こと、それを用いた BaTaO₂N の結晶成長を報 告している^{[2],[4]}.数µmの酸窒化物単結晶の合 成例は過去になく、単結晶を用いて評価した酸 窒化物の誘電特性を初めて報告した.フラック ス量や加熱条件を調整すれば、フラックスを介 した粒子形成による結晶性の向上や微粒子化が 期待できる.本申請課題では、BaCN₂フラッ クスを用いた酸窒化物ペロブスカイトの合成条件を精密に制御し,高結晶性で数10 nmの微粒子を合成する手法の開発を目的とした.

研究方法

1. 試料の合成手法

本研究で用いた BaCN₂ は BaCO₃ を NH₃ 気流 中焼成して合成した.アルミナボートに BaCO₃ 粉末をのせ、50 mL/min の NH₃ 気流中 900°C で 10 時間焼成した.得られた BaCN₂ は大気中 の水分と反応して分解するため、以下のプロセ スは乾燥雰囲気中で実施した.BaCN₂ と Ta₂O₅ を Ba/Ta = $1.0 \sim 2.0$ となるように秤量し、N₂ 雰囲気のグローブボックス内で混合した.混合 粉は 50 mL/min の N₂ 気流中で 700 ~ 950°C の 温度で 5 時間焼成し生成物を得た.生成物は硝 酸で洗浄して過剰な Ba 成分を除去した.

生成物の結晶相は粉末 XRD (Rigaku, Ultima-IV)の回折パターンから評価し,回折線の線 幅から結晶性を調べた. 微細組織は SEM (Jeol, JSM-6500F)および高電圧 TEM (HVTEM; Jeol, JEM-ARM-1300)で評価した.

研究成果

1. 生成相と BaCN₂/Ta₂O₅ 混合比の関係

 $Ba/Ta = 1.0 の BaCN_2/Ta_2O_5 混合粉を N_2 気流$ $中で焼成すると、700°C では <math>BaTaO_2N$ 相は得 られず $Ba_3Ta_5O_{14}N$ と $BaTa_2O_6$ の混合物が得ら れた. 焼成温度を750°C に上げると $BaTaO_2N$ が主相で得られたが、試料には Ta_3N_5 や Ta_4N_5 がわずかに含まれた. 焼成中に $BaCN_2$ がわず かに揮発し、Ta 系不純物が副生したものと考 えられた. これら窒化物不純物は酸に不溶であ り、除去が困難なことから、Ba 過剰な組成を もつ $BaCN_2/Ta_2O_5$ 原料の焼成を検討した.

 $Ba/Ta = 1.2 の BaCN_2/Ta_2O_5 混合粉を 750°C で$ 5 時間 N₂ 気流中加熱したところ,生成物は $<math>BaTaO_2N に加えて Ba_2(CN_2)(CN)_2 が得られた.$ この不純物は酸性溶液に可溶であり,酸洗浄後 は BaTaO₂N の単一相が得られた(図1). 様々 な焼成温度において, BaCN₂/Ta₂O₅ 混合比率を 変えて生成相を調べたところ,図2のように BaTaO₂N を酸洗浄後に単一相で得るには高温 ほど Ba 過剰組成が必要であることがわかった. 焼成温度 950°C では, Ba/Ta 比が 1.6 以上の場 合でのみ BaTaO₂N の単一相が酸洗浄後に得ら れた. 高温ほど BaCN₂ の揮発が進行するため, BaTaO₂N 単 一相の生成には,より多くの BaCN₂ が必要になると考えられる. Ba が不足

Fig. 1 XRD patterns for the products obtained from the $BaCN_2/Ta_2O_5$ mixture with Ba/Ta = 1.2 fired at 750°C before and after acid washing.

Fig. 2 Crystalline phases of the products obtained from the $BaCN_2/Ta_2O_5$ mixtures with different Ba/Ta ratio at several temperatures after acid washing.

した場合に試料に含まれる不純物相は、焼成温度の上昇とともに $Ta_3N_5 \rightarrow Ta_4N_5 \rightarrow TaN$ と変化した.

各温度で得られた BaTaO₂N 相の結晶子径を XRD 回折線の線幅から算出し表1にまとめた. NH₃ 気流中 930°C で得られた BaTaO₂N の結晶 子径が 40 nm だったのに対して, BaCN₂ を用 いた合成手法では, 750°C では 80 nm, 900°C で 90 nm, 950°C で 100 nm ま で 増 大 し た. BaCN₂ の融点がおよそ 910°C であり, 900°C と 950°C における焼成では BaCN₂ の融液が Ta₂O₅ と反応し BaTaO₂N が生成し, 融液への溶解と 再析出によって結晶性が向上したものと考えら れる.

2. 試料の微細構造

BaCN₂を用いて合成した BaTaO₂N 粉末の SEM 像を図 3 に示す. NH₃ 窒化法で合成した

Table 1 Crystallite sizes (D) of the BaTaO₂N particles.

	BaCN ₂ /Ta ₂ O ₅ process			NH ₃ process
Temp. [°C]	750	900	950	930
<i>D</i> [nm]	80	90	100	40

Fig. 4 TEM and electron diffraction patterns of the BaTaO₂N grains obtained at 950°C. (a) and (b): cubic-like grain, (c) and (d): truncated octahedral grain. The ED patterns were obtained from the red-circle positions, respectively.

BaTaO₂N はおよそ 130 nm の粒子が互いに凝集 した 2 次粒子を形成していた.一方で, BaCN₂/ Ta₂O₅ 混合粉末を 750°C で焼成して合成した BaTaO₂N 粉末は 210 nm 程度の粒子と数 10 nm の微細な粒子の混合物となっていた.殆どが丸 みのある形状であり,特定の結晶面の優先的な 成長はみられなかった.

焼成温度が 900°C になると, 粒子の形状は 立方体状に変化し, 粒子サイズも約 230 nm に 増大した. さらにこれらの粒子は均一性に優れ 分散性よく生成していた. 950°C になると粒子 サイズがさらに 360 nm に増大し, 切頂八面体 状の大きい粒子が多く得られた. これらの粉末 の高い分散性は, 焼成後の酸処理過程で, 粒子 間に残存した Ba 過剰の可溶成分が除去された ためと考えられる.

BaTaO₂N 粒子の結晶面を調べるために, HVTEM を用いて数 100 nm の粒子を直接 TEM 観察した.電子線の加速電圧は 1250 kV とした. 図4の TEM 像から,立方体状の粒子はペロブ スカイト構造の {100} 面によって囲まれてい た.一方で切頂八面体の粒子は,その電子線回

Fig. 5 Diffuse reflectance UV-Vis spectra of the BaTaO₂N powders obtained from BaCN₂/Ta₂O₅ mixtures and prepared by NH₃ nitridation method.

折パターンの方位関係から、{100} と {111}の 結晶面に囲まれた粒子と考えられた.立方体状 の BaTaO₂N 粒子は合成温度 900°C で多く観察 され、950°C では切頂八面体粒子の割合が増加 した.合成温度が低温ほど <111>方位の成長 速度が速く、{100}面が成長し、高温では相対 的に <100>方位の成長速度が増加し、{111}面 が成長したと考えられる.特定の結晶面が成長 した粒子は光触媒反応では有利に働く場合が報 告されており、成長する結晶面まで制御できる 本合成プロセスで得られた粒子の触媒活性にも 期待がもてる^[5].

得られた BaTaO₂N の拡散反射スペクトルは, NH₃ 窒化法で作製した試料よりも長波長域の反 射率が低く,焼成温度が低いほど反射率も低い 傾向があった(図5).反射率の立ち上がり位 置は 750°C で合成した試料がより短波長であ り,BaTaO₂NよりもO 過剰な組成の生成物が 得られた可能性がある.950°C で合成した試料 は,長波長域の反射率が低いものの,バンド ギャップエネルギーは NH₃ 窒化法で作製した BaTaO₂N とほぼ同程度だった.

参考文献

 Kageyama H., Hayashi K., Maeda K., Attfield J.P., Hiroi Z., Rondinelli J.M., Poeppelmeier K.R., Expanding frontiers in materials chemistry and physics with multiple anions, Nature Communications, 9 (2018) 1–15. 研

究

助

成

https://doi.org/10.1038/s41467-018-02838-4

- [2] Hosono A., Masubuchi Y., Yasui S., Takesada M., Endo T., Higuchi M., Itoh M., Kikkawa S., Ferroelectric BaTaO₂N crystal grown in a BaCN₂ flux, Inorganic Chemistry, 58 (2019) 16752–16760. https://doi.org/10.1021/acs.inorgchem.9b02917
- [3] Hosono A., Masubuchi Y., Higuchi M., and Kikkawa S., Ferroelectric BaTaO₂N perovskite—Towards structureproperty relationship study on high-quality crystals and ceramics prepared with the aid of liquid phase, Solid State Sciences, 144 (2023) 107310/1-10.

https://doi.org/10.1016/j.solidstatesciences.2023.107310

- [4] Hosono A., Stoffel R.P., Masubuchi Y., Dronskowski R., Kikkawa S., Melting behavior of alkaline-earth metal carbodiimides and their thermochemistry from firstprinciples, Inorganic Chemistry, 58 (2019) 8938–8942. https://doi.org/10.1021/acs.inorgchem.9b01462
- [5] Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Photocatalytic water splitting with a quantum efficiency of almost unity, Nature, 581 (2020) 411–426. https://doi.org/10.1038/s41586-020-2278-9

外部発表成果

論文発表

 Masubuchi Y., Koyama K., Kusano H., Higuchi M., Synthesis of BaTaO₂N particles with wellgrown crystal facets from BaCN₂ and Ta₂O₅, in preparation.

口頭・ポスター発表

 小山 恭平, 鱒渕 友治, 細野 新, 猪口 真志, 樋口 幹雄, "BaTaO₂N の低温焼結に向けた 前駆体粉末形状の検討", 日本セラミックス 協会第 35 回秋季シンポジウム (Tokushima, Sep. 14–16, 2022) 1PC01.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 151–155 /https://doi.org/10.14356/hptf.21123

HPTF21123

湿度で可逆的に構造変形する人工まつかさ

Artificial Pinecone with Reversible Structural Deformation under Humidity

研究代表者 Research leader: 松井 淳 Jun MATSUI 山形大学理学部 教授 Department of Science, Yamagata University, Professor E-mail: jun_m@sci.kj.yamagata-u.ac.jp

抄 録

高分子微粒子は塗料,電子,医療部材など多様な分野で応用される材料である.一般的に形成され る高分子微粒子はもっとも表面自由エネルギーの小さな球状からなる.本研究ではこのような背景 において,加湿下において主鎖と側鎖の相分離"ナノ相分離"によりラメラ構造を形成するドデシ ルアクリルアミド高分子(pDDA)が微粒子状から板状へと自己組織的に構造変化を引き起こす事 を示す.フラッシュナノ沈殿(Flash NanoPrecipitation, FNP)法を用いて作製した pDDA のナノ粒 子は 50 nm 程度の球状形状となった.このナノ粒子を加湿下でアニールしたところ,球状構造が板 状へと構造変化することを見いだした.これはナノ粒子の状態においてランダム鎖を形成していた 高分子鎖が加湿アニールによりラメラへとスタックしたためと考えられる.すなわち高分子一本鎖 の構造変化により,その集合体である粒子のマクロ構造まで変化させる事に成功した.

ABSTRACT

Polymer particles are materials applied in diverse fields such as coatings, electronics, and medical components. Generally, polymer particles form a spherical shape because of their low surface free energy. In this study, we show that dodecyl acrylamide polymer (pDDA), which forms a lamellar structure by "nano-phase separation" of the main and side chains under humidification, undergoes a self-organized structural change from a fine particle shape to a plate shape. Nanoparticles of pDDA prepared by the flash nanoprecipitation method have a spherical shape of about 50 nm. When the nanoparticles were annealed under humidified conditions we found that the spherical structure changed to a plate-like structure. This is thought to be due to the fact that the polymer chains that formed random chains in the nanoparticle state were stacked into lamellae by humidified annealing. In other words, we succeeded in changing the macrostructure of the particles by changing the conformation of their component polymer.

研究背景と目的

高分子微粒子は塗料や液晶ディスプレイのス ペーサー. 医療診断キットなど多様な領域に用 いられている. このような高分子微粒子は乳化 重合や再沈法など様々な手法で形成される. 一 方でその形態の多くは球状を示している. これ は一般的には非晶性高分子を用いて微粒子を作 成するため、最も表面エネルギーが小さい球形 になることが熱力学に安定なためである. その ため、例えば異形の微粒子を形成させるために は、光リソグラフィーの手法などを用いる必要 があった (Perry et al., 2011). また多様な微粒 子群において、外部刺激により体積が膨潤や収 縮するものはあるが、粒子の構造すなわち幾何 学的構造が変化するものはない.一方で自然界 においては、松かさのように湿度に応じてかさ が開くなど、外部刺激に応じてその構造が大き く変化するものが多数存在する. そこで本研究 では申請者が世界に先駆けて見いだしたアルキ ルアクリルアミド系高分子の湿度による自己組 織化を用い、松かさのように湿度に応じてその 形状が変化する高分子微粒子の作成を試みた.

我々はアルキルアクリルアミド系高分子薄膜 が加湿下でのアニールによりランダムな配向か ら一軸配向したラメラ膜へと自己組織化するこ とを見いだしている.またこのラメラ構造形成 は加湿により極性のアミド部位に水が吸着し疎 水性のアルキル側鎖との相分離"ナノ相分離" により引き起こることを明らかにしている(図 1)(Hashimoto et al., 2017; Ebata et al., 2019;

H₂ 加湿下の**"ナノ相分離"** 同一高分子鎖における<u>水が吸着した</u> <u>主鎖</u>と疎水性アルキル鎖との相分離</u> ラメラ構造化

Fig. 1 Mechanism for lamellar formation by nanophase separation.

Amada et al., 2022). これまでアクリルアミド 系高分子薄膜を用いランダムからラメラへの構 造変化についてその分子スケールでの配向性に ついて X 線散乱測定を中心に用い解析を行っ てきた.一方で,集合したランダム鎖がナノ相 分離により自己組織的にラメラ構造増加するプ ロセスが高分子全体に起これば,そのマクロ構 造も変化できると着想した.そこで,本研究で はドデシルアクリルアミド高分子 (pDDA)か らなる微粒子を合成し,微粒子内において高分 子鎖がランダム構造からラメラ構造への自己組 織化を駆動力として微粒子の幾何構造を変化さ せる事を行った.

研究方法

1. 合成

市販の*N*-Dodecyl acrylamide (DDA, Tokyo Chemical Industry Co., Ltd., purity >97.0%) クロ ロホルムを良溶媒, ヘキサンを貧溶媒とする 再結晶により生成した後に2,2'-azobis (isobutyronitrile) (AIBN)を熱開始剤とするフ リーラジカル重合によって合成した(図2). 以下にその詳細を記載する.DDA (3.0 g, 1.3 × 10⁻² mol)とAIBN (21 mg, 1.3 × 10⁻⁴ mol) を混合し, N₂で充填したグローブボックス中 でトルエン(63 mL)を加え,溶液中のDDA 濃度を0.20 Mとした.その後,60°Cで12 h反 応させた.反応後の溶液を多量のアセトニトリ ルへ滴下することで pDDA を沈殿させた.こ の再沈殿プロセスを3 回行い,得られた白色沈 殿物を真空乾燥させた.生成物の確認は

Fig. 2 Synthesis of pDDA via free-radical polymerization using AIBN as a thermal initiator at 60°C for 12 h.

研

¹H NMR 測定, GPC 測定で行った. また標準ポ リスチレン換算の分子量を GPC により決定し た.

2. pDDA ナノ粒子の作製

pDDA ナノ粒子は高分子微粒子の作製手法で あるフラッシュナノ沈殿 (Flash Nano-Precipitation, FNP) により行った (Johnson and Prud'homme, 2003; Zhang et al., 2012). 具体的に は、30 mL 蒸留水を入れたビーカー上に三方 コックを設置した自作の装置を用いた. 三方 コックの一方に、3 mL 蒸留水を入れた注射器 を設置し他方に 20 mM pDDA THF 溶液を 3 mL 入れた注射器を設置した (図3). その後、そ れぞれの注射器を 1 mL s⁻¹で押し込み、流出し た溶液をビーカーに注ぎ、室温で 48 h 以上撹 拌した. 凝集したポリマーをろ過 (No. 5B, 保 留粒子径 4 μ m, Advantec) により回収し、ろ 液に分散している pDDA ナノ粒子を用いた.

3. pDDA ナノ粒子の加湿アニール

pDDA ナノ粒子を Si 基板上にドロップキャ ストし観察用の試料とした. 続いてこの基板と 飽和 K_2SO_4aq が入ったシャーレを密閉容器に いれ, $60^{\circ}C$ の恒温器に保持することで加湿ア ニールを行った. 所定時間アニール後基板を速 やかに室温に取り出した.

研究成果

1. pDDA の合成と微粒子化

pDDA の合成は¹H NMR, GPC により確認し た.¹H NMR よりビニル基に由来するピーク (5.5-6.3 ppm)が消失し、ドデシル側鎖に由来 するピーク (0.8-1.5 ppm), 高分子主鎖に由来 するピーク(1.6-2.4 ppm)が観測された.また GPC 測定より pDDA の数平均分子量は 2.54 × 10⁴. 多分散度は 2.13 であった. また pDDA の 熱物性を DSC 測定より検討したところ昇温過 程において二つの吸熱ピークを観測し, -35.8℃付近にアルキルドメイン内で部分的に 結晶化したドデシル側鎖の融解に関連するピー クと 73.7℃ にガラス転移温度 (T_o)を観測した. 以上より pDDA が室温ではガラス状に非晶性 高分子であることがわかった. そこで, Si 基 板上に pDDA 分散液をキャストし乾燥後に基 板表面を走査型電子顕微鏡(SEM)により観 察した(図4a). SEM 像より基板上に粒径 50-125 nmの pDDA 球状粒子が観察された.以上 の結果から FNP により pDDA ナノ粒子の作製 に成功したことが分かった. またその粒度分布 を検討したところ粒子サイズが 40-60 nm 程度 のものが多いことが分かった(図4b).これは、 溶液を混合する速度が速く,溶質が非溶中で飽 和に達する速度が速いため粒子径が小さいもの が多いと考えている.

Fig. 3 Image of FNP setup.

Fig. 4 (a) SEM image of pDDA nanoparticles. (b) Histogram of the particle size obtained from the SEM image fabricated by drop-casted onto Si substrate and dried under air.

Fig. 5 SEM image of pDDA after humid annealed at 60°C for 24 h.

2. pDDA 微粒子の加湿アニールによる幾何 構造変化

続いて、この基板を用いて加湿アニールを 60°C で 24 h 行いその表面形態を SEM で観察 した. 興味深い事に加湿アニール後の基板表面 では球状構造は観察されず数百 nm 長さの板状 構造が観察された(図5).この粒子状から板 状への構造変化は既報の加湿アニールによるナ ノ相分離を誘起し、ラメラ構造を形成したため と考えられる. すなわちナノ粒子の状態におい てランダム鎖を形成していた高分子鎖が加湿ア ニールによりラメラへとスタックすることで板 状へと変化する. このことは高分子一本鎖の構 造変化が、その集合体である粒子のマクロ構造 まで変化できる事が可能であることを示してい る. 同体積の粒子と比較し表面エネルギーが大 きい板状構造の形成は結晶性高分子に限られて いる. そのため、本研究では加湿により粒子の 幾何学的構造を変化させただけでなく,非晶性 高分子において自己組織的に板状構造を形成出 来る独自の材料となる.

3. 幾何構造の可逆制御

pDDA ラメラ構造は非加湿下,ガラス転移温 度以上でアニールすることで,エントロピー的 に有利なランダム構造へと戻る事がわかってい る.そこで,加湿アニールによりラメラ構造化 し板状構造を形成した pDDA を *T*g 以上の 90°C でアニールを行った.その結果板状構造が観察 されなくなり,粒径 50 nm 程度の粒子状構造が

Fig. 6 SEM image of pDDA nanoparticles after humid annealed at 60°C for 24h followed by annealed 90°C for 12 h.

観察された(図6). これは,高分子のT_g以上 でアニール行うことでラメラ構造が崩壊し,表 面積を最小とするように球状構造へ戻ったと考 えられる.

4. まとめ

アルキルアクリルアミド系高分子が加湿ア ニールにより自己組織的に形成するラメラ構造 化を用いる事で、そのマクロ構造制御を行った. FNP 法を用いる事で直径 50 nm 程度の pDDA ナノ粒子の合成に成功した. このナノ粒子を加 湿下でアニールすると pDDA のラメラ構造化 により数百 nm 程度の板状構造へとそのマクロ 構造が変化した. このように pDDA を用いる ことで、松かさにみられる湿度による構造変化 を達成することができた.

参考文献

Amada K., Ishizaki M., Kurihara M., Matsui J., Self-assembly and -cross-linking lamellar films by nanophase separation with solvent-induced anisotropic structural changes, ACS Omega, 7 (2022) 16778–16784.

https://doi.org/10.1021/acsomega.2c01675

Ebata K., Hashimoto Y., Yamamoto S., Mitsuishi M., Nagano S., Matsui J., Nanophase separation of poly(n-alkyl acrylamides): the dependence of the formation of lamellar structures on their alkyl side chains, Macromolecules, 52 (2019) 9773–9780.

https://doi.org/10.1021/acs.macromol.9b01817

Hashimoto Y., Sato T., Goto R., Nagao Y., Mitsuishi M., Nagano S., Matsui J., In-plane oriented highly ordered lamellar structure formation of poly(N-dodecylacrylamide) induced by humid annealing, RSC Advances, 7 (2017) 6631–6635. https://doi.org/10.1039/c6ra27994e Johnson B.K., Prud'homme R.K., Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer, Australian Journal of Chemistry, 56 (2003) 1021–1024. https://doi.org/10.1071/CH03115
Perry J.L., Herlihy K.P., Napier M.E., DeSimone J.M., PRINT: a novel platform toward shape and size specific nanopar-

<u>外部発表成果</u>

口頭・ポスター発表

 Matsui J., "Self-assembled structure formation in homo and random copolymers films by nanophase separation" International Symposium for the 80th Anniversary of the Tohoku Branch of the Chemical Society of Japan (Sendai Sep., 8–10, ticle theranostics, Accounts of Chemical Research, 44 (2011) 990–998. https://doi.org/10.1021/ar2000315

Zhang C., Pansare V.J., Prud'homme R.K., Priestley R.D., Flash nanoprecipitation of polystyrene nanoparticles, Soft Matter, 8 (2012) 86–93. https://doi.org/10.1039/c1sm06182h

2023).

 Nakashima M., Kikuchi M., Suzuki R., Kasai H., Ebe H., Matsui J., "Structure change of poly(dodecyl acrylamide) nanoparticles from sphere to rectangular by humid annealing",令 和5年度化学系学協会東北大会および日本 化学会東北支部80周年記念国際会議(Sendai Sep., 8–10, 2023).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 156-160 /https://doi.org/10.14356/hptf.21124

HPTF21124

粉体特性値を用いた DEM 用物理パラメータ推定法の開発

Inverse Analysis of DEM Input Parameters Using Powder Properties by Machine Learning Technique

研究代表者 Research leader: 村田 秀信 Hidenobu MURATA

大阪公立大学大学院工学研究科 助教

Graduate School of Engineering, Osaka Metropolitan University, Assistant Professor (現 一般財団法人ファインセラミックスセンター (JFCC) 材料技術研究所 上級研究員) (Currently: Materials Research & Development Laboratory, Japan Fine Ceramics

Center, Senior Researcher)

E-mail: hidenobu_murata@jfcc.or.jp

抄 録

離散要素法 (DEM) は粉体関連の問題を解決できる手法として期待されているが, 正確なシミュレーションを行うには扱う粉体に合わせて多くの入力パラメータを調整する必要があり, 普及の妨げとなっている. そこで本研究では, 機械学習を用いて粉体特性から DEM 用の入力パラメータを逆推定することを試みた. 粉体として最も単純なモデルである付着性のない粉体を扱い, 粉体特性として流出速度, ゆるめかさ密度, 安息角を採用した. DEM 用の入力パラメータである摩擦係数, 反発係数, ばね定数, 形状パラメータを 750 通りの組み合わせに変化させて各粉体特性の DEM シミュレーションを実施し, 機械学習用データベースを構築した. サポートベクター回帰により, 粉体特性から DEM 用の入力パラメータを逆推定する機械学習モデルを構築したところ, いずれの DEM 用の入力パラメータについても実用的な精度で逆推定することに成功した.

ABSTRACT

The discrete element method (DEM) is a promising method for solving various problems on powders. However, there are a number of input parameters for DEM simulations. This study demonstrates the inverse prediction of the DEM input parameters from the DEM output powder properties using machine learning techniques. The simplest powder model, a non-adhesive powder, was used as the powder. Outflow rate, aerated bulk density, and repose angle are adapted as powder properties. A database for machine learning was constructed by performing DEM simulations on the powder properties with 750 combinations of input parameters consisting of friction coefficient, restitution coefficient, spring constant and shape parameter. Support vector (SV) regression successfully reproduces the DEM input parameters from the DEM output powder properties with practical accuracy. These results lead to further use of machine learning in DEM simulations.

研究背景と目的

Cundal と Stlack によって開発 (Cundall and Strack, 1979) された離散要素法 (Discrete Element Method, DEM) は粉体の表面粗さ、濡 れ特性、電場・磁場応答性などを取り扱うこと ができるシミュレーション手法であり、産業界 で散見される粉体関連の諸問題, すなわち, 閉 塞, 付着, 摩耗, 漏出, 流動, 飛散, 蓄熱, 発 火, 粉塵爆発, 偏析などを解決できる手法とし て期待されている. DEM シミュレーションで は,接触力,摩擦力,転がり抵抗を考慮した運 動方程式を解くことにより、各粒子の並進運動 および回転運動を計算する、そのため、現実の 粒子の振る舞いに近づけるために新たな物理モ デルの構築や要素の追加が容易であるという特 徴がある、一方で、正確なシミュレーションを 行うためには、扱う粉体に合わせて非常に多く の入力パラメータを調整しなければならないと いう問題がある.

DEM シミュレーションの入力パラメータを 調整することは DEM における不可避な課題で あり,研究テーマの一分野を形成している. (Elskamp et al., 2017; Coetzee, 2017; Boikov, 2019; Roessler et al., 2019; Richter, 2020; Lima et al., 2021). DEM シミュレーションの入力パラ メータには,粉体の粒径や密度といった比較的 容易に計測可能なパラメータもあるが,粉体間 の摩擦係数や反発係数といったパラメータは直 接計測することは困難である. 直接計測するこ とが困難な入力パラメータについては,異なる 入力パラメータを用いて試行錯誤的に多数の DEM シミュレーションを実施し,扱う粉体の 粉体特性が再現できるように調整することが一 般的である.

粉体特性という観点では、これまでにホール フローメーターやパウダテスタ[®]によって様々 な粉体の評価が行われてきた(Schwedes, 2003; Ghadiri et al., 2020). これらの粉体特性を使用 して DEM シミュレーション用の入力パラメー タを推定できれば多くの分野において役に立つ ことが期待される.しかし,DEM シミュレー ションでは,複数の入力パラメータの影響を受 けて粉体特性が計算されるため,特定の入力パ ラメータを粉体特性から推定することは困難で ある.

そこで本研究では、機械学習技術を使用して 粉体特性から DEM シミュレーション用入力パ ラメータを決定することを試みた.粉体特性と して,流出速度,ゆるめかさ密度,安息角を採 用し,これらの実験を模倣したモデルの DEM シミュレーションを,入力パラメータを変えな がら網羅的に行うことで機械学習用データベー スを構築し,サポートベクター回帰により逆推 定を行った.

研究方法

1. 粉体特性の DEM シミュレーション

DEM シミュレーションには Granuleworks[®] (プロメテック・ソフトウェア株式会社)を用 いた. 接触力には Voigt モデルを使用し, 転が り抵抗には Elasto-perfectly plastic モデル (Jiang et al., 2005)を用いた.

粉体のモデルとして,最も単純な付着性のな い粉体を採用した.粒径は1.0 mm,粒子の密 度は1000 g/cm³とした.表1に示すように摩 擦係数,反発係数,ばね定数,形状パラメータ を変化させた.変数の組み合わせは750 通りと なる.

粉体特性の計算モデルとして,流出速度,ゆ るめかさ密度,安息角を採用した.流出速度は 以下のように計算した.直径 50 mm,深さ 200 mmの容器中に 200,000 個の粒子を均一に

Table 1DEM input parameters.

Number of cases	750
Friction coefficient	0.1, 0.3, 0.5, 0.7, 0.9
Restitution coefficient	0.1, 0.3, 0.5, 0.7, 0.9
Spring constant	100, 300, 500, 700, 900
Shape parameter	0.0, 0.4, 0.6, 0.8, 1.2, 1.6, 2.0

研

究

分布するように初期配置し,その後自由落下さ せた.容器底部の直径 20 mm の穴に蓋をして おき,シミュレーション開始1秒後に蓋を除去 した.その後1秒間に容器内から流出した粒子 数から流出速度を算出した.

ゆるめかさ密度の計算では,直径 50 mm,深 さ 50 mm の容器の上方 110 mm にホッパーを 設置し,粒子を初期速度 0.05 m/s で容器の上方 200 mm の位置から流入量が 1 m³/s となるよう に粒子を落下させた.シミュレーション開始か ら 10 秒後に容器内に含まれる粒子からゆるめ かさ密度を算出した.

安息角では、直径80mmの平板の上方 110mmにホッパーを設置し、平板の上方 200mmから初期速度0.05m/sで流入量が1m³/s となるように粒子を落下させた. DEM シミュ レーションは10秒間続け、9秒から10秒の安 息角を平均した.

2. 機械学習による逆推定

DEM 用の入力パラメータの逆推定のための 機械学習にはサポートベクター回帰を用いた. カーネル関数には Radial Basis Function(RBF) を用い, R言語の kernlab ライブラリ(Karatzoglou et al., 2004; Karatzoglou et al., 2023)を用いて解 析プログラムを実装した. ハイパーパラメータ である C と sigma は二段階のグリッドサーチ で決定した. 一回目のグリッドサーチは 10⁻⁵ から 10⁵ の範囲で行い, 二回目は一回目の最適 値 x_{1st} に対して lmx_{1st} (l = 0.1 または 1, m = 1 か ら 9の整数)を探索した. グリッドサーチでは 10 分割交差検証(10-folds cross validation, CV) を 10 回繰り返し、二乗平均平方根誤差(Rootmean-squared error, RMSE)の平均が最小となる ものを採用した. サポートベクター回帰に使用 する ε はハイパーパラメータとして取り扱った が、 10⁻¹ から 10⁻⁴ の範囲で機械学習に大きな 影響を与えなかったため 10⁻² とした.

全てのデータは機械学習に用いる前に標準化 を行ってから使用した.

研究成果

図1に本研究で行った全ての粉体特性の DEM シミュレーション結果を示す.入力パラ メータを変えると各粉体特性は変化して分布し ていることが確認できる.いずれの DEM 用の 入力パラメータと粉体特性の間に直接的な関係 を見出すことはできなかった.このことは、複 数の入力パラメータが各粉体特性に作用してい ることを示している.

結果の一例として摩擦係数の逆推定について 記述する.10分割交差検証の結果,ハイパー パラメータCと sigma はそれぞれ3と9に決 まり,そのときのRMSE は0.113であった.こ れは,摩擦係数の推定が実用的な精度で行えた ことを示している.

本研究で使用した三つの粉体特性の中で,ど の特性が摩擦係数の推定に重要であるかを明ら かにするために,使用する粉体特性を一つまた は二つに制限して逆推定を行った結果を図2に 示す.粉体特性を一つのみを使用した場合は,

Fig. 1 Calculated (a) outflow rates, (b) aerated bulk densities and (c) repose angles.

Fig. 2 CV scores using different combinations of powder properties. *D*, *R* and *O* means aerated bulk density, repose angle and outflow rate, respectively.

粉体特性により予測性能が異なっており,流出 速度が最も良い RMSE を示した. このことは DEM 用の入力パラメータが粉体特性に与える 影響に強弱があることを示している. また,逆 推定に使用する粉体特性を増やすと予測性能も 向上する傾向が見られ,単体では予測性能が低 い粉体特性も,複数組み合わせることで性能向 上につながることが分かった.

摩擦係数の逆推定に必要なシミュレーション 件数を見積もるために,件数を制限して逆推定 を行った結果を図3に示す.RMSEは,逆推定 に用いるシミュレーション件数nを用いて,

$$(RMSE) = 0.33n^{-0.16} \tag{1}$$

とべき乗でフィッティングすることができた. このことは逆推定の予測性能を向上させるため にシミュレーション件数を増やすしても劇的な 効果が期待できないないことを示している.一 方,実用的な予測性能は概ね 100-200 件で達成 していることがわかった.

以上の結果から,粉体特性を用いて摩擦係数 を逆推定するには,異なる入力パラメータの 100-200件のDEMシミュレーションを複数の 粉体特性に関して実施してデータベースを構築 し,機械学習することが有効だとわかった.ま た,他のDEM用の入力パラメータに関しても, 本研究のデータベースを用いて実用的な水準の 逆推定を行うことに成功しており,機械学習を

Fig. 3 CV scores using different number of resampled cases.

用いて粉体特性から DEM シミュレーション用 入力パラメータを推定することが可能であると 実証できたと結論する.

参考文献

- Boikov A.V., Savelev R.V., Payor V.A., Vasileva N.V., DEM calibration approach: orthogonal experiment, Journal of Physics: Conference Series, 1210 (2019) 012025. https://doi.org/10.1088/1742-6596/1210/1/012025
- Coetzee C.J., Review: calibration of the discrete element method, Powder Technology, 310 (2017) 104–142. https://doi.org/10.1016/j.powtec.2017.01.015
- Cundall P.A., Strack O.D.L., A discrete numerical model for granular assemblies, Géotechnique, 29 (1979) 47–65. https://doi.org/10.1680/geot.1979.29.1.47
- Elskamp F., Kruggel-Emden H., Hennig M. Teipel U., A strategy to determine DEM parameters for spherical and non-spherical particles, Granular Matter, 19 (2017) 46. https://doi.org/10.1007/s10035-017-0710-0
- Ghadiri M., Pasha M., Nan W., Hare C., Vivacqua V, Zafar U., Nezamabadi S., Lopez A., Pasha M., Nadimi S., Cohesive powder flow: trends and challenges in characterisation and analysis, KONA Powder and Particle Journal, 37 (2020) 3–18. https://doi.org/10.14356/kona.2020018
- Jiang M.J., Yu H.-S., Harris D., A novel discrete model for granular material incorporating rolling resistance, Computers and Geotechnics, 32 (2005) 340–357. https://doi.org/10.1016/j.compgeo.2005.05.001
- Karatzoglou A, Smola A, Hornik K., kernlab: kernel-based machine learning lab, R package version, 0.9-32, (2023) https://CRAN.R-project.org/package=kernlab
- Karatzoglou A., Smola A., Hornik K., Zeileis A., kernlab An S4 package for kernel methods in R, Journal of Statisti-

cal Software, 11 (2004) 1–20. https://doi.org/10.18637/jss.v011.i09

Lima R.M., Brandao R.J., Santos R.L., Duarte C.R., Barrozo M.A.S., Analysis of methodologies for determination of DEM input parameters, Brazilian Journal of Chemical Engineering, 38 (2021) 287–296.

https://doi.org/10.1007/s43153-021-00107-4

Richter C., Rößler T., Kunze G., Katterfeld A., Will F., Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials – Part II: efficient optimization-based calibration, Powder Technology, 360 (2020) 967–976. https://doi.org/10.1016/j.powtec.2019.10.052

Roessler T., Richter C., Katterfeld A., Will F., Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials – part i: solving the problem of ambiguous parameter combinations, Powder Technology, 343 (2019) 803–812.

https://doi.org/10.1016/j.powtec.2018.11.034

Schwedes J., Review on testers for measuring flow properties of bulk solids, Granular Matter, 5 (2003) 1–43. https://doi.org/10.1007/s10035-002-0124-4

外部発表成果

論文発表

 Murata H., Yamanoi M., Suzuki Y., Inverse analysis of friction coefficient in discrete element method using powder properties by support vector regression, Journal of the Ceramic Society of Japan, 132 (2024) 189–192.

https://doi.org/10.2109/jcersj2.23135

口頭・ポスター発表

 村田 秀信, "材料研究におけるデータ駆動 型手法の導入の試みと適用例",日本機械学 会計算力学部門解析・設計の代替モデリン グ研究会第8回研究会(Osaka, Dec. 8, 2023).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 161–165 /https://doi.org/10.14356/hptf.21125

HPTF21125

スラグ流を反応場としたコアシェル型微粒子の高速合成 Partid Minuted and Sumthasis of Case Shall Particles Using Shall

Rapid Microflow Synthesis of Core–Shell Particles Using Slug as A Reaction Vessel

研究代表者 Research leader: 渡邉 貴一

貴一 Takaichi WATANABE

岡山大学学術研究院環境生命自然科学学域 准教授 Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Associate Professor E-mail: wata-t@okayama-u.ac.jp

抄 録

コアシェル型微粒子は、複数の異なる物性を共存させることが可能であり、形態や粒径を制御する ことによって、光学材料、診断薬、フィラーなど、多岐にわたる製品に応用されている。コアシェ ル型高分子微粒子は、シード粒子の調製後にシェル材料を重合させるという多段階プロセスを経て 製造される.しかしながら、この製造プロセスは時間がかかる上、操作も複雑である.本研究では、 マイクロフロー・プロセスにおいてスラグ流を重合場とした、コアシェル型微粒子の高速かつ連続 的な合成技術を開発した.本報告では、Water-in-Oil 型スラグ流を反応場とした Soap-free 乳化重合 により流路の閉塞を起こすことなく、粒径が均一なコアシェル型高分子微粒子を連続的に合成した 事例を報告する.

ABSTRACT

Core-shell polymer particles, which exhibit multiple distinct physical properties, are utilized in a variety of products, including optical materials, diagnostics, and fillers. These particles are fabricated through a multistage process that begins with the preparation of seed particles and is followed by the polymerization of shell materials. However, this method is time-consuming and involves complex procedures. In this study, we have developed a continuous microflow process using slug flow to produce core-shell polymer particles. This report introduces a rapid technique to synthesize monodisperse core-shell polymer particles through sequential soap-free emulsion polymerization within a Water-in-Oil slug flow.

研究背景と目的

コアシェル型高分子微粒子は,使用される高 分子の組み合わせや微粒子の形態・粒径などを 制御することにより,機能性を容易に調整でき るため,光学材料,診断材料,コーティング材, フィラーなど,多岐に渡る用途に応用されてい る.これらのコアシェル型高分子微粒子は,シー

- 161 -

ド乳化重合法と呼ばれる多段階の重合プロセス を用いて製造されている.近年、シード乳化重 合中の熱力学および動力学的パラメータの制御 により、コアシェル、ヤヌス、中空、ラズベリー 状などの異なる形態の微粒子を構造制御する方 法が提案されている(Vatankhah et al., 2020). しかし、既存の回分式反応器を用いたシード乳 化重合は、各段階の重合に多くの時間が必要で あり、操作も複雑である.

マイクロ空間を利用したマイクロフロー・リ アクターは、大きな比表面積と体積比を持つた め、伝熱や物質輸送に優れ、温度と反応時間を 精密に制御できるなどの独特な特性を有してい る. そのため, 回分式や従来の管式反応器に代 わる革新的な反応器として化学・生物工学の分 野で注目されている.近年では、有機合成だけ でなく、重合反応にもマイクロフロー・リアク ターが適用されている。特に、マイクロ空間で 油相と水相を混合して形成されるスラグ流は, 界面活性剤を使用せずに両相を隔離するマイク ロスケールの空間を作り出せるため、注目され ている. 重合系のような液相で微粒子を形成す る場合、スラグ流内での微粒子生成により、流 路の閉塞を防げる.また.スラグ流内部で生じ る内部循環流による撹拌効果と、管壁に形成さ れる薄膜層を利用した物質輸送速度の向上によ り,重合速度の増加が報告されている (Song et al., 2018: Watanabe et al., 2019).

本研究では、Water-in-Oil(W/O)型スラグ流 を用いた Soap-free 乳化重合を 2回連続してお こない、コアシェル型高分子微粒子の迅速な合 成を目的とした.具体的には、第一段階の重合 で Methyl methacrylate(MMA)を重合し、 Poly(methyl methacrylate)(PMMA)微粒子を合 成した.続いて、第二段階の重合では、PMMA 微粒子をシードとして Styrene(St)を重合し、 PMMA/PS 複合微粒子を合成した.反応場(回 分式反応器とスラグ)が重合挙動に与える影響 を比較することによって、本技術の有効性を評 価した.

研究方法

1. 実験試料

MMA (FUJIFILM Wako) および St (FUJIFILM Wako 社製) は, 蒸留精製後に使用された. 蒸留水は, 蒸留水製造システム (RFD210TC, ADVANTEC, Japan) で生成された. 開始剤 Potassium persulfate (KPS) と不活性油 Dodecane, 界面活性剤 Span 85 は FUJIFILM Wako 社から購入し, そのまま使用された.

スラグ流を用いた Soap-free 乳化重合プ ロセスの構築

図1に示すように, PTFE 素材のT字型ユニ オン(外径 1/16 インチ, GL science 製)と

Fig. 1 Schematic image of the preparation process for core-shell particles using slug flow.

PTFE チューブ(内径 1 mm, 外径 1/16 インチ, GL science 製)を組み立ててマイクロ流路を作 製した.PTFE チューブの入口側にはシリンジ ポンプを接続した.流路の下流にあるチューブ を 70°C の油浴に浸漬して,重合場とした.第 一段階の MMA 重合の滞留時間を 20 分に設定 し,第二段階の St 重合の滞留時間については, チューブ長を変更することで 15 分から 120 分 の間で制御された.第一の重合場と第二の T 字型 PTFE ユニオンの間には,W/O スラグに残 留した油相を除去するために,15 cm の長さの 多孔質水油分離器(PTFE フィルターチューブ, 内径 1 mm,外径 2 mm)を設置した.重合後, 出口チューブから排出された生成物を氷浴に置 かれたサンプル瓶に回収した.

回分反応器を用いた PMMA/PS 微粒子の 調製

回分反応器を使用して, Soap-free 乳化重合 法により PMMA 微粒子を合成した. 続いてそ れをシード粒子として St のシード乳化重合を おこない, PMMA/PS 微粒子を合成した. 脱気 処理を施した 5 mM KPS 水溶液 (30 mL) と脱 気処理を施した MMA/Dodecane 混合液 (体積 比 4/1) (30 mL)を二つ口フラスコに加えた後, 240 rpm, 70°C, 窒素雰囲気下で 20 分間にわたっ て MMA を 重 合 した. その後, 30 mL の St/ MMA 混合物 (体積比 4/1)を加え, 240 rpm, 70°C の窒素雰囲気下で 15 分から 120 分間にわ たって St のシード乳化重合をおこなった. 生 成物を遠心分離 (11,000 rpm, 15 分)で精製し, その後凍結乾燥した.

4. スラグ流を用いた **PMMA/PS** 微粒子の調 製

W/O スラグ流内で Soap-free 乳化重合法によ り PMMA 微粒子を合成し, 続いて St のシード 乳化重合をおこなうことで PMMA/PS 微粒子を 連続合成した. 第一段階のモノマー相として 5 wt% Span 85 を含む MMA/Dodecane 混合液(体 積比 4/1)を用いた. 水相として 5 mM KPS 水 溶液を用いた.総流量 176.6 μL/min で水相とモ ノマー相を体積比 1.0 となるように送液し, 70°C で 20 分間 重合した.その後,多孔 質 PTFE チューブ区間でモノマー相を除去し,水 相のみを残した.続いて第二段階のモノマー相 として 5 wt% Span 85 を含む St/Dodecane 混合 液(体積比 4/1)をT字型ユニオンで導入し, 70°C で所定時間(15分から 120分)重合させ, PMMA/PS 微粒子を合成した.重合後の粒子分 散液を氷浴に置かれたサンプル瓶で回収した. 生成物を遠心分離(11,000 rpm, 15分)で精製 した後,凍結乾燥した.

5. 生成物の特性評価

生成物の形状や粒径を走査型電子顕微鏡 (SEM)による観察で評価した.粒子径分布は CV値(標準偏差/平均粒径×100)で評価され, CV値が10%未満のものを単分散と定義した. 200個の微粒子の粒径を測定し,その平均を平 均粒径とした.生成物に含まれる残存モノマー の量はガスクロマトグラフィで定量し,モノ マーの添加率は以下の式により算出された.モ ノマー添加率[%] = [1 – (未反応モノマーの量/ 投入モノマーの量)]×100.

研究成果

1. スラグ重合挙動の観察

図2には、第一段階(MMA)の反応におけ

Fig. 2 Image of a reaction tube immersed in an oil bath. The reaction proceeded from the bottom to the top of the image.

る油浴内のスラグ流の様子を示す.図2の下か ら上にかけて重合時間が経過している様子を示 している.スラグの分散相の色が透明から白色 に変化している様子が観察された.この結果よ り,連続相のモノマー相から分散相にモノマー が供給され,分散相(水相)で選択的に PMMA 微粒子が生成していることが示唆され た.また,第一段階の重合において,少なくと も120分間は閉塞せずに重合が進行することも 確認された.

2. PMMA シード微粒子合成における反応場 が重合挙動に与える影響

PMMA シード微粒子合成において,反応場 (回分式反応器とスラグ反応器)が重合挙動に 与える影響を評価した.同一の重合条件におい て,20分重合した結果を図3に示す.図3より, 回分式反応器で PPMA 微粒子を重合した場合,

Fig. 3 SEM images of PMMA seed particles prepared with (a) batch and (b) slug systems.

粒子径は180 nm(*CV*=6.5%)であった.一方で, スラグ流を重合場とした場合,300 nm(*CV*= 7.7%)であった.この結果より,いずれの重 合場においても単分散微粒子が得られた.また スラグを反応場とした場合の方が,重合速度が 短時間で重合が進行し,より大きな微粒子が得 られることがわかった.

3. シード乳化重合による PMMA/PS 微粒子 の合成

PMMA/PS 微粒子の連続合成をおこなった. 回分式反応器では MMA を重合した後,同じ反応器に St を追添加することでシード乳化重合をおこなった.予備検討において, PMMA シード粒子濃度が 5 wt% 未満の場合,シード乳化重合において PS 微粒子の単独重合も併発することがわかったため, PMMA シード粒子が大過剰に生成される条件で重合を実施した.

図4には二段階目のStのシード乳化重合の 経時変化を示す.図3と同様に,一段階目の重 合時間は回分式反応器とスラグも同時間であっ たが,スラグの方が重合速度は速いため,得ら れるシード粒子の粒径が大きくなった.その後, 二段階目のSt重合においても反応器の違いは 粒子成長の違いをもたらした.回分式反応器で

Fig. 4 SEM images of PMMA/PS particles prepared with (a) batch and (b) slug systems.

は 120 分重合後の生成物は粒子径 240 nm (CV = 6.2%, 添加率 43%) であったのに対して, ス ラグでは 430 nm (CV = 9.9%, 添加率 97%) で あった.回分式反応器に比べてスラグでは粒径 分布がわずかに拡がったが,単分散性を維持し ており,反応率および粒子径は約2倍まで増加 した.また FT-IR 測定より,いずれの条件にお いても生成物は PMMA/PS 微粒子であることが 確認された.以上の結果より,シード乳化重合 の反応場を回分式反応器からスラグに変更する ことによって,短時間で連続的にコアシェル型 微粒子が得られることがわかった.

現在,この成果を基に,本プロセスをどのような複合微粒子調製に適応できるのか,またど のような構造制御が可能かについての検討を進 めている.さらに,スラグ流内での物質移動に 関する定量的な理解を深めるための研究もおこ なっている.

参考文献

Song Y., Song J., Shang M., Xu W., Liu S., Wang B., Lu Q., Su Y., Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors, Chemical Engineering Journal, 353 (2018) 769–780.

https://doi.org/10.1016/j.cej.2018.07.166

Vatankhah Z., Dehghani E., Salami-Kalajahi M., Roghani-Mamaqani H., Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery, Colloids and Surfaces B: Biointerfaces, 191 (2020) 111008.

https://doi.org/10.1016/j.colsurfb.2020.111008

Watanabe T., Karita K., Tawara K., Soga T., Ono T., Rapid synthesis of poly(methyl methacrylate) particles with high molecular weight by soap-free emulsion polymerization using water-in-oil slug flow, Macromolecular Chemistry and Physics, 220 (2019) 1900021. https://doi.org/10.1002/macp.201900021

外部発表成果

口頭発表

Watanabe, T., "Rapid synthesis of monodisperse

polymer particles using slug flow", Flow Chemistry Asia 2022 (Oct. 6. 2022).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 166-170 /https://doi.org/10.14356/hptf.21126

HPTF21126

磁気欠陥が制御された磁性ナノ粒子薄膜

Magnetic Nanoparticle Thin Films with Controlled Magnetic Defects

研究代表者 Research leader: マクナミー キャシー エリザベス Cathy Elizabeth McNAMEE 信州大学繊維学部 教授 Faculty of Textile Science and Technology, Shinshu University, Professor (現 京都大学大学院工学研究科 教授) (Currently: Graduate School of Engineering, Kyoto University, Professor) E-mail: mcnamee.cathy.8r@kyoto-u.ac.jp

抄 録

オレイン酸でコーティングされた Fe₃O₄ ナノ粒子(NP)のラングミュア膜を基板に累積すること により Fe₃O₄ 薄膜を調製した. 膜中の NP のパッキング状態は, ラングミュア膜の形成に使用した 展開溶液中の NP 濃度によって制御した. NP 濃度を低くすると, 細いワイヤーのネットワークの ようなフィルムが得られた. 対照的に, NP 濃度が高い展開溶液を使用した場合は, 不規則な形と 厚みのワイヤー状の構造が得られた. 高 NP 濃度で観察された不規則な NP パッキングは, 気・水 界面における NP 凝集によって説明される. この凝集は, NP に吸着したオレイン酸分子による粒 子間疎水力によって引き起こされている. Fe₃O₄ NP 膜に帯電した SiO₂ NP を添加すると, 膜中の NP 凝集が減少することが判明した. SiO₂ NP は膜に静電反発力を導入し, NP 凝集を減少させるた めと考えられる. 凝集が無く制御されたナノ粒子薄膜を形成する能力は, ナノおよびバイオテクノ ロジー分野における応用範囲を広げることが期待される。

ABSTRACT

Thin films of Fe_3O_4 were prepared by transferring Langmuir films of Fe_3O_4 nanoparticles (NPs) coated with oleic acid molecules at air–aqueous interfaces. The packing of the NPs in the film was controlled via the concentration of NPs in the spreading solution used to form the Langmuir film. Films resembling a network of thin wires were obtained when a low NP concentration was used. In contrast, films of wires of irregular shapes and thicknesses were obtained when spreading solutions with high NP concentrations were used. The irregular NP packing observed at high NP concentrations is explained by NP aggregation at the air–aqueous interface. This aggregation is explained by inter-particle hydrophobic forces due to the oleic acid molecules adsorbed onto the NPs. The NP aggregation in the films was further reduced by adding charged SiO₂ NPs to the Fe₃O₄ NP films. The SiO₂ NPs introduced electrostatic repulsions in the films, which reduced the NP aggregation. The ability to form thin films showing a controlled NP packing without aggregations is envisioned to improve their ability to be used in nano- and bio-technological applications.

研究背景と目的

病院では、カテーテルなどの器具が手術に使われている。それらの器具にはバクテリアが吸着して、汚れることが知られている。表面へ吸着するバクテリア数の時間依存性を検討した研究^[1]から、6分程度の短い時間でもバクテリアの存在が確認できることが分かっている。バクテリア数は時間とともに増えており、バクテリアで汚れた器具をつかうと、患者さんはバクテリアに感染するリスクがあることがわかる。患者の感染リスクを減らすために、病院で使用される器具は抗菌薄膜でコーティングされている。コーティング膜がある所では、バクテリアの存在数が少なくなる。

抗菌コーティング膜の材料として抗菌性をも つ材料を使う必要がある.酸化鉄のナノ粒子は. 非毒性と生体適合性を示すことが知られてい る.酸化鉄ナノ粒子 (NP) でコーティングさ れた器具の使用時間と吸着しているバクテリア の密度の変化を検討した研究^[2]がある。24時 間という十分に長い時間が経過した後における バクテリア密度を比較している. コーティング がない場合と比べると、酸化鉄 NP コーティン グの方がバクテリアの数が少ないことが分かっ ている. この結果は. 酸化鉄 NP が抗菌性を示 すためと理解できる. ほとんどの場合, 手術は 24時間以内で終了する。そのため、病院で使 用される器具に酸化鉄 NPの膜をコーティング することは抗菌性の観点から有効だと考えられ る.

酸化鉄 NP 自体は親水性の表面を有するが, その表面をオレイン酸で被覆すると,疎水性を 示すようになるため,気・水界面に存在できる ようになる^[3].また,オレイン酸で被覆される ことにより,ナノ粒子はクロロホルムのような 疎水性溶媒に分散できるようになる.クロロホ ルムは水面単分子膜を作製する時に,一般的に 使われる溶媒である.

本研究の目的はオレイン酸で被覆された酸化 鉄 NP を使って欠陥が少ない薄膜を作ることで ある.オレイン酸で被覆された酸化鉄 NP は疎 水性が強い.一般に疎水性が強すぎる物質は気・ 水界面で凝集し,欠陥の多い多層膜を形成する ことが知られている^[4].欠陥の少ない酸化鉄 NP 膜を形成させるための基礎的知見を得るこ とを目的として,はじめに1)オレイン酸で被 覆された酸化鉄 NP を使って,気・水界面で薄 膜を形成させ,その構造(凝集状態)を評価す ることを行う.続いて,2)その膜の構造を積 極的に制御するパラメータを明らかにする.具 体的には,以下の2通りの制御方法を試みる.

1)酸化鉄 NP のみの使用で膜構造を制御する方法

2)静電斥力を使って膜構造を制御する方法
 (Fe₃O₄ NP + SiO₂ NP 混合膜を作る)

欠陥が少ない酸化鉄 NP の薄膜ができれば, 抗菌特性を持つ軽量フィルムとしての使用が期 待できる.

研究方法

1. 薬品

酸化鉄 NP として、オレイン酸で被覆された Fe₃O₄NP を使用した.Fe₃O₄NP の直径は 8.5 nm であり、SiO₂NP は Fe₃O₄NP と大きさが近い直 径 10 nm のものを使用した (SnowtexN(spherical), Nissan Chemical Industries Ltd., Japan, 20 wt% in an aqueous solution).水面膜の作製には超純水 を使用した (Direct-Q[®] 3 UV, Merck-Millipore 社).水相に添加する塩としては NaCl (99.5% purity, Wako Pure Chemical Industries, Japan) を 使用した.また、展開溶媒としてはクロロホル ム (和光純薬)を使用した.

2. 膜の作製

気・水界面で薄膜をつくるために、NPをクロロホルムに分散した展開溶液を使用した.膜の作製のためラングミュア・トラフ(KSV NIMA, BiolinScientific社)を使用した.マイクロシリンジを用いて適当な量のNPのクロロホルム溶液を気・水界面に展開し、10分間室 研

温で放置し,分散媒のクロロホルムを揮発させた.

NP 膜の特性を調べるため、表面圧 – 占有面 積等温測定および原子間力顕微鏡(AFM)イ メージングを行った. AFM イメージング用の サンプルは Langmuir-Blodgett 法を使って気・ 水界面での NP の膜を基板(マイカ)に累積し て調性した. 具体的には、テープで表面を剥離 した 市 販 の マイカ 基 板 (1 × 1 cm²) を Langmuir-Blodgett trough の水相に浸漬させた状 態で、分散液の試料を展開した. 10 分間室温 で放置させ分散媒であるクロロホルムを揮発さ せたのち、Langmuir-Blodgett trough のバリアを 圧縮させ薄膜を作製した. その際、表面圧を 10 mN/m に維持した状態で、マイカ基板を 1 mm/min の速度で引き上げて累積した.

3. 膜のイメージング

原子間力顕微鏡による薄膜のイメージングを 行った. 原子間力顕微鏡 (Nanoscope III, Veeco) を Tapping モードでマイカ基板上に累積した薄 膜をイメージングした.

研究成果

1. Fe₃O₄ NP の膜

図1は4種類の異なる濃度のFe₃O₄ NP 溶液 を展開・作製された水面膜の等温線である.同 じ表面圧における粒子あたり占有面積値の比較 から,濃度が高くなると,等温線は粒子あたり の面積の値が小さい方向にシフトすることがわ かる.この4種類の等温線測定で使用した NP 溶液の濃度は異なるが,気・水界面上に展開さ れた NP 数は同じとなる条件下で測定されてい る.この結果は,展開溶液中の NP 濃度は,気・ 水界面で形成される NP 膜における NP のパッ キングに影響を与えることを強く示している.

タイト・パッキング状態における粒子あたり の占有面積を計算するため、以下の式を使った.

$$A_{\rm hex} = \pi R^2 / 0.74 \tag{1}$$

Fig. 1 Surface pressure-Area/particle isotherms of films resulting when four different Fe_3O_4 NP spreading solution concentrations were used. The area/particle value for a NP film with tight packing is shown by the dotted line.

*R*は半径, *A*_{hex}は最密充填状態における粒子当たりの占有面積である.タイト・パッキングの値は図1では点線で示している.すべての膜は,タイト・パッキングより高い値を示した.この結果から膜の中に穴(欠陥)があると考えられる.

展開溶液の濃度が膜の構造に与える影響を調 べるため、気・水界面での膜をマイカ基板に累 積した. 膜が崩壊する前の表面圧である, 10 mN/m で膜を累積した. AFM を使ってその 膜をイメージングした(図2).展開溶液の濃 度が増えると、膜での穴が増えていることがわ かる. 穴が増えるということは, 膜の中のナノ 粒子の凝集が増えたことを意味する.また、膜 での穴の場所でハイト・プロファイルを測定す ると、膜厚を測定することができる、一番低い 濃度(0.1 mg/mL)の展開溶液を用いて作製さ れた膜のハイト・プロファイル測定から、膜厚 は NP の直径と同じぐらいの大きさであること が分かった. すなわち, 0.1 mg/mLの展開溶液 を使用すれば NP が一層だけ気・水界面に並ん だ単粒子膜ができることが分かる.しかし,もっ と高い濃度の展開溶液を使うと, NPの直径よ りも膜厚の方が大きくなる部分が増えていく. これらの結果から、膜における穴や凝集といっ

た欠陥は展開溶液の濃度と共に増えると考えら れる.

気・水界面上の膜での NP の凝集の原因について検討した.酸化鉄 NP はオレイン酸に被覆されている.オレイン酸の COOH 基は酸化鉄 NP の表面に吸着し、オレイル基は NP 表面から外側に伸びた状態で存在する.オレイル基は 強い疎水性を有することが知られている.2個の NP が接近すると、NP 表面から外側に向かって伸びているオレイル基が互いにオーバーラップできるような状態となる.そのような状態では、NP 間に疎水性の引力が発生するために、NP が引き寄せられ、結果として凝集が発生すると考えられる.

気・水界面でのNPの凝集状態に及ぼす展開 溶液の濃度の影響について検討した.先にも述 べたように、4種類の水面膜は異なる濃度の展 開溶液を用いて調製されたが、展開溶液量をコ ントロールすることにより、気・水界面に存在 するNP数は同一となっている.展開溶液の濃 度が薄い場合は、孤立したNPが気・水界面に 存在していると考えられる.しかし、濃い濃度 の展開溶液を使用した場合は、NPが気・水界 面でクラスターを形成していると考えられる. 展開溶液の濃度が増えると、当然であるがNP 間の距離が短くなる.展開溶媒であるクロロホ

Fig. 2 AFM images of the films compressed to 10 mN/m and then transferred to a substrate.

ルムは疎水性なので、NPが展開溶媒の中にあ るときは、オレイル基由来の疎水性引力は発生 せず、NPは分散した状態で安定に存在できる. しかし、NPが気・水界面に展開され、展開溶 媒であるクロロホルムが完全に蒸発した後は、 NP間にオレイル基に由来の疎水性の引力が働 く.展開溶液における NP 濃度が高い場合は、 近距離に存在する NP 数が多くなるため、より 多くのクラスターが形成されると考えられる.

2. Fe₃O₄ NP + SiO₂ NP の混合膜

Fe₃O₄ NP 単体の膜においては,展開溶液に おける NP 濃度が増えると,気・水界面での NP 膜に欠陥 (穴や凝集) が増えることが分かっ た.NP 膜における欠陥を減らすため,NP 膜 に静電斥力を導入することを試みた.

荷電粒子として無機材料の NP である SiO₂ NP を使用した.水相の pH が SiO₂ NP の等電 点より高い状態では SiO₂ NP は帯電することが 知られている.帯電した SiO₂ NP を Fe₃O₄ NP 膜に添加すると,SiO₂ NP 間の静電反発力によ り Fe₃O₄ NP 膜における凝集を減らすことがで きると期待できる.

SiO₂ NP は親水性なので,通常は気・水界面 では不安定であり安定な膜を形成しない.しか し,水相として純水ではなく100 mM NaClの 水溶液を使うと,SiO₂ NP は気・100 mM NaCl の界面で安定な膜ができることが分かっている^[5]. また SiO₂ NP の等電点は pH 2~3 の間である. そのため,pH 6 の 100 mM NaCl の液体を使う と,SiO₂ NP は負に帯電した状態となる.図3に,

Fig. 3 AFM images of the film containing only Fe_3O_4 NPs, and the film containing both the Fe_3O_4 NPs and SiO_2 NPs. 研

究

助

成

 Fe_3O_4 NP 膜,および SiO_2 NP を添加した Fe_3O_4 NP 膜の AFM 像を示す.いずれも表面圧 10 mN/m でマイカ上に累積されている. Fe_3O_4 NP 膜は欠陥が最も少ない試料(展開溶液濃度: 0.1 mg/ml)であるが、それと比較しても、SiO_2 NP の添加により欠陥がさらに少なくなってい ることが分かる.

3. 結論

気・水界面で形成されるオレイン酸被覆 Fe₃O₄ NP 膜の構造欠陥を少なくすることを目 的として,等温線測定,およびマイカ基板上に 累積した膜の AFM イメージング測定を行い, 以下のことを明らかにした.

- ・展開溶液における NP 濃度が増えると、気・水界面で形成される NP 膜における欠陥 (穴・凝集等)が増加する.
- ・オレイン酸被覆 Fe₃O₄ NP 膜に帯電した SiO₂
 NP を添加することによって膜中に静電反発 力を導入することは、膜の構造欠陥を軽減す る効果があった。

参考文献

- Antonelli M., Turolla A., Mezzanotte V., Nurizzo C., Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment, Water Science and Technology, 68 (2013) 2638–2644. https://doi.org/10.2166/wst.2013.542
- [2] Niemirowicz K., Swiecicka I., Wilczewska A., Misztalewska I., Kalska-Szostko B., Bienias K., Bucki R., Car H., Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa, International Journal of Nanomedicine, 9 (2014) 2217–2224. https://doi.org/10.2147/ijn.s56588
- [3] Liu C., Shan Y., Zhu Y., Chen K., Magnetic monolayer film of oleic acid-stabilized Fe₃O₄ particles fabricated via Langmuir-Blodgett technique, Thin Solid Films, 518 (2009) 324–327.

https://doi.org/10.1016/j.tsf.2009.07.052

- [4] McNamee C.E., Sato Y., Wiege B., Furikado I., Marefati A., Nylander T., Kappl M., Rayner M., Rice starch particle interactions at air/aqueous interfaces—effect of particle hydrophobicity and solution ionic strength, Frontiers in Chemistry, 6 (2018) 139. https://doi.org/10.3389/fchem.2018.00139
- [5] McNamee C.E., Kanno K., Use of silica nanoparticle Langmuir films to determine the effect of surface roughness on the change in the forces between two silica surfaces by a liquid flow, Langmuir, 39 (2023) 3450–3461. https://doi.org/10.1021/acs.langmuir.2c03424

外部発表成果

論文発表

 McNamee C.E, Yamamoto S., Shigekura H., Ogawa T., Control of the assembly of Fe₃O₄ nano-particles on water and mica surfaces, In Preparation.

口頭・ポスター発表

 マクナミーキャシー,小川智之,山本真平, "気-水界面で形成したFe₃O₄ナノ粒子膜の 構造制御",第73回コロイドおよび界面化 学討論会(広島大学東広島キャンパス・オ ンライン,Sep. 20-22, 2022)1B03. 研

4-2 令和4年度

研究者育成のための援助成果報告

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 172-176 /https://doi.org/10.14356/hptf.22501

HPTF22501

体積膨張する多孔性錯体の変形阻害と吸着挙動制御 Inhibited Structural Expansion of Metal–Organic Frameworks and Control of Adsorption Behaviors

有馬 誉

援助対象者 Scholarship Student: 有馬 誉 Homare ARIMA 京都大学大学院工学研究科 博士課程後期 2 年 Graduate School of Engineering, Kyoto University, PhD student (D2) E-mail: arima@cheme.kyoto-u.ac.jp

研究指導者 Academic Leader: 渡邉 哲

邊哲 Satoshi WATANABE 准教授 Associate Professor E-mail: nabe@cheme.kyoto-u.ac.jp

抄 録

構造柔軟性を有する多孔性錯体(MOF)は、骨格構造の体積膨張を伴うステップ状の吸着挙動を 示す. MOF は粉末試料であるため、工業利用には何かしらの成形が必要だが、高分子バインダー を用いてペレット化すると、ステップ挙動が緩慢になることが報告されている. この原因は、高分 子によって MOF の体積膨張が阻害されるためだと考えられる. 本研究では、体積膨張率の異なる MOF をペレット化し、吸着挙動の比較を行った.

ABSTRACT

Several types of metal–organic frameworks (MOFs) exhibit S-shaped adsorption isotherms due to their structural expansions. These materials are obtained as powder samples and require molding for industrial use; however, molding the samples with polymer binders reportedly made the S-shape less distinct. Our previous study elucidated this mechanism: the polymers inhibited the volume expansion of MOFs in the pellets. In this study, we molded two types of flexible MOFs exhibiting different volume expansion ratios and compared their adsorption behaviors. We concluded that a flexible MOF with a smaller volume expansion suppresses the smeared effect when in pellet form.

成果の概要

1. 緒言 持続可能な社会の実現に向けて,世界的なエ ネルギー不足は解決すべき重要な課題である. 産業プロセスにおいては、全エネルギー消費の うちおよそ半分が分離工程で使用されており、 今後は、熱エネルギーに依存した蒸留分離プロ 研

究

者

セスからの転換が望まれている (Sholl and Liverly, 2016). 特に,物性が類似しているガス 同士の分離には、多孔質材料を用いた吸着分離 が有効であり、圧力や温度による吸着量の違い を利用した分離方法が提案されている(pressure swing adsorption, temperature swing adsorption \dot{c} ど). これらの吸着分離プロセスの分離効率は, 多孔質材料の性能に高く依存する.近年,高い 分離性能を示す材料として,構造柔軟性を有す る多孔性錯体 (Flexible metal-organic frameworks; MOFs) が注目されている. Flexible MOF は, ガス吸着の際に、ある閾圧において骨格構造の 変形を伴うステップ状の吸着挙動を示す(Horike et al., 2009). この現象はゲート吸着と呼ばれ, ステップ近傍での吸着量変化が大きいことから 工業利用に向けた検討が進められている(Hiraide et al., 2020). MOF は粉末試料であるため、分 離カラム内での利用を見据えると、何かしらの 成形が必要である. そこで, 積層型 Flexible MOF \mathcal{O} ELM-11 ([Cu(BF4)₂(bpy)₂]_n; bpy = 4,4'bipyridine) (Kondo et al., 2006) を高分子バイン ダーでペレット化してみると、特徴的なステッ プ吸着挙動が緩慢化してしまうことがわかっ た. 前述の通り, Flexible MOF の工業有用性は, 急峻なステップ吸着挙動に依存しているため, ペレット化によるゲート吸着緩慢化の現象解明 およびその抑制が求められる. これまでに我々 は熱力学的な解析により現象理解を進めてお り, 高分子によって ELM-11 の構造変形が阻害 されていることがこの原因だと明らかにしてい る (Hiraide et al., 2021). この結果に従えば, 構造変形が小さい MOF は、高分子からの変形 阻害を受けにくいことが期待される.実際に, ELM-11 は吸着に伴い約 30% の体積膨張をする ことが知られており、その体積膨張率の大きさ が緩慢化現象の一因だと考えられる. そこで本 研究では、体積膨張率が約10%のJG-MOF ([Cu₂(bdc)₂(bpy)]_n; bdc = 1,4-benzenedicarboxylate) (Seki, 2002) を成形し、その吸着挙動を比較す ることで, MOF 自体の体積膨張率と成形によ る吸着性能低下の相関を明らかにした.

2. 実験手法

分子量約 360000 のポリビニルピロリドン (PVP) を溶媒(ELM-11:純水, JG-MOF:メ タノール)に加え,加熱・溶解させた後に室温 まで放冷し,MOF 粉末と混合してスラリーと した.その後,直径約 3 mm の半球状鋳型に流 し込み,308 K で一晩乾燥させることでペレッ トとした(図1).試料は真空下で一定時間加 熱し脱溶媒したのち(前処理),CO₂吸着等温 線(ELM-11:273 K, JG-MOF:263 K)により評 価した.種々の PVP 含有率 w_{pvp} (= PVP 粉末 重量/(PVP 粉末 + ELM-11 粉末重量))でペ レットを作製し,吸着挙動を比較した.同一サ ンプルに対して,繰り返し吸着測定を行う際に は,その都度,同様の条件で前処理を行った.

3. 結果と考察

種々の PVP 配合量で成形した ELM-11 およ び JG-MOF ペレットの吸着等温線を図2に示 す.ここでの縦軸は,MOF 重量あたりの吸着 量であり,ペレット化したことによる MOF 自 身の吸着量変化を表している.ELM-11 のペ レットは,PVP 含有率の増加に伴い吸着枝の ステップ挙動が緩慢化しており,100 kPa 地点 での吸着量も大幅に減少している.一方で, JG-MOF のペレットは、多少の緩慢化こそ生じ ているものの、粉末に近いステップ挙動を保っ ており,100 kPa における吸着量も粉末と同等 であることがわかった.以上の結果から,構造 変形の小さい Flexible MOF は、成形体内部に

Fig. 1 (a) ELM-11 and (b) JG-MOF pellets with $w_{pvp} = 0.1$. Adapted with permission from Ref. (Arima et al., 2023). Copyright: (2023) American Chemical Society.

Fig. 2 CO₂ adsorption isotherms on (a) ELM-11 pellets (273 K) and (b) JG-MOF pellets (263 K) with various weight fractions of PVP, w_{pvp}. Adapted with permission from Ref. (Arima et al., 2023). Copyright: (2023) American Chemical Society.

おいて,高分子からの構造変形阻害を受けにく く,当初の期待通り,ゲート吸着緩慢化が抑制 されることがわかった.

同一サンプルに対して、複数回吸着測定を行い、その挙動を比較した(図3). ELM-11のペレットは一度目よりもステップ挙動が急峻になった一方で、JG-MOFのペレットは、一度目と変わらない吸着挙動を示した. この相違はFlexible MOFの体積膨張の大きさと高分子の塑性変形によって説明できるものと考えられる(図4). つまり、体積膨張の大きい ELM-11 は、一度目の吸着時に高分子バインダーを大きく押し退けて構造変形するため、高分子が不可逆的に変形する(図4, a1-3). その結果、二度目の吸着時には、ELM-11 粒子周りの高分子が減少し、ある種の空隙が形成されており(図4, a4)、構造変形阻害の影響が緩和されたと考え

Fig. 3 First and second CO₂ adsorption isotherms on (**a**) ELM-11 pellets with $w_{pvp} = 0.2$ (273 K) and (**b**) JG-MOF pellets with $w_{pvp} = 0.3$ (263 K). Adapted with permission from Ref. (Arima et al., 2023). Copyright: (2023) American Chemical Society.

られる.一方で,JG-MOF は体積膨張が小さい ために,粒子の構造変形によって押し退けられ た高分子は,脱着と同時に可逆的に戻ったと考 えられる(図4b).ここで図2における脱着枝 に着目すると,ELM-11ペレットは粉末と同様 に急峻である一方,JG-MOFペレットは僅かに 緩慢化していた.この結果は,体積膨張の大き なELM-11は脱着(体積収縮)時に外力を受け なかった一方で,JG-MOF は脱着時にも外力を 受け続けていたことを示唆しており,上記の理 論を支持する結果となった(図4,a3,b3).

4. 結言

構造変形時の体積膨張率が異なる二種類の Flexible MOFを高分子バインダーでペレット化 し、体積膨張の大きさに起因した吸着挙動の相 違を明らかにした.ここで得られた知見は、

Fig. 4 Mechanism of the first and second CO₂ adsorption/desorption cycles on MOFs with different volume expansion ratios.

Flexible MOF の分離プロセス利用を見据えた上 で重要であるが、『体積膨張が小さければ、良 い吸着材である』とは一概に結論づけられない. それは、Flexible MOF のもう一つの特性である 熱的特性が、体積膨張率の大きさに応じて変化 しうるからである(Mason et al., 2015; Hiraide et al., 2017). 一般的に吸着は発熱現象であり、分 離塔内部では、吸着が進行することによる温度 上昇および吸着量の低下が問題となっている. Flexible MOF は骨格の構造変形時にこれらの吸 着熱の一部を吸熱することで、塔内の温度上昇 を抑える特性を有する. この特性は、構造変形 が大きいほど、強く発現すると考えられるので、 「熱」の観点からは、構造変形の大きい Flexible MOF の方が有用であると考えられる. 以上よ り,成形時の緩慢化抑制と熱的特性のトレード オフを検討することが工業化に向けた今後の課 題である.

参考文献

- Arima H., Hiraide S., Miyahara M.T., Watanabe S., Validating the mechanism underlying the slacking of the gateopening behavior in flexible metal–organic frameworks arising from the application of external force, ACS Applied Materials and Interfaces, 15 (2023) 36975–36987. https://doi.org/10.1021/acsami.3c05923
- Hiraide S., Tanaka H., Ishikawa N., Miyahara M.T., Intrinsic thermal management capabilities of flexible metal– organic frameworks for carbon dioxide separation and capture, ACS Applied Material and Interfaces, 46 (2017) 41066–41077. https://doi.org/10.1021/acsami.7b13771

Hiraide S., Sakanaka Y., Kajiro S., Kawaguchi S., Miyahara M.T., Tanaka H., High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities, Nature Communications, 11 (2020) 3867.

https://doi.org/10.1038/s41467-020-17625-3

- Hiraide S., Arima H., Tanaka H, Miyahara M.T., Slacking of gate adsorption behavior on metal–organic frameworks under an external force, ACS Applied Material and Interfaces, 13 (2021) 30213–30223. https://doi.org/10.1021/acsami.1c07370
- Horike S., Shimomura S., Kitagawa S., Soft porous crystals, Nature Chemistry, 1 (2009) 695–704. https://doi.org/10.1038/nchem.444
- Kondo A., Noguchi H., Ohnishi S., Kajiro H., Tohdoh A., Hattori Y., Xu W.-C., Tanaka H., Kanoh H., Kaneko K., Novel expansion/shrinkage modulation of 2D layered

<u>外 部 発 表 成 果</u>

論文発表

 Arima H., Hiraide S., Miyahara M.T., Watanabe S., Validating the mechanism underlying the slacking of the gate-opening behavior in flexible metal–organic frameworks arising from the application of external force, ACS Applied Materials and Interfaces, 15 (2023) 36975– 36987. https://doi.org/10.1021/acsami.3c05923

口頭・ポスター発表

 Arima H., Hiraide S., Miyahara M.T., Watanabe S., "Shaping of flexible metal-organic frameworks and less distinct gate adsorption caused by restricted volume expansion", 1st Mediterranean Conference on Porous Materials (Crete, Greece, May 17–19, 2023) A4-2. MOF triggered by clathrate formation with CO₂ molecules, Nano Letters, 6 (2006) 2581–2584. https://doi.org/10.1021/nl062032b

- Mason J.A., Oktawiec J., Taylor M.K., Hudson M.R., Rodriguez J., Bachman J.E., Gonzalez M.I., Cervellino A., Guagliardi A., Brown C.M., Llewellyn P.L., Masciocchi N., Long J.R., Methane storage in flexible metal–organic frameworks with intrinsic thermal management, Nature, 527 (2015) 357–361. https://doi.org/10.1038/nature15732
- Seki K., Dynamic channels of a porous coordination polymer responding to external stimuli, Physical Chemistry Chemical Physics, 4 (2002) 1968–1971. https://doi.org/10.1039/b110899a
- Sholl D.S., Lively R.P., Seven chemical separations to change the world, Nature, 532 (2016) 435–437. https://doi.org/10.1038/532435a
- 2. 有馬 誉, Leila Abylgazina, Irena Senkovska, Ilka Helmes, 平出 翔太郎, Günter K. Auernhammer, Stefan Kaskel, 渡邉 哲, "原 子間力顕微鏡を用いたソフト多孔性錯体へ の外力印加によるゲート物性評価", 化学工 学会第54 回秋季大会 (Hakata, Sep. 11–13, 2023) F121.
- 有馬 誉, 永野 拓幸, 平出 翔太郎, 渡邉 哲, "原子間力顕微鏡によるソフト多孔性錯体単 粒子への外力印加とゲート型脱着挙動の解 析", 第36回日本吸着学会研究発表会 (Kanazawa, Dec. 7–8, 2023) F121.
- 4. 永野 拓幸,有馬 誉,平出 翔太郎,渡邉 哲, "AFM を用いたソフト多孔性錯体が示す構造転移挙動の強制誘起と熱力学的解析",化 学工学福井大会 2023 (Fukui, Dec. 7–8, 2023) A220.
- 5. 有馬 誉, 庄田 寛, 平出 翔太郎, 渡邉 哲, "異 方性相転移モデルを用いた協奏的な吸着誘 起構造転移挙動の解明", 化学工学会第89 年会(Sakai, Mar. 7-8, 2024) K314.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 177-180 /https://doi.org/10.14356/hptf.22502

HPTF22502

全固体電池用硫黄/多孔質炭素溶融混練プロセスの解析 **Characterization of Hot-Melt Kneading Process of Sulfur and Porous Carbon for All-Solid-State Batteries**

元志

援助対象者 Scholarship Student: 巖 元志 Motoshi IWAO 大阪公立大学大学院工学研究科 博士後期課程1年 Graduate School of Engineering, Osaka Metropolitan University, PhD student (D1) E-mail: su23418n@omu.ac.jp

研究指導者 Academic Leader: 仲村 英也 Hideya NAKAMURA 准教授, Associate Professor E-mail: hideyanakamura@omu.ac.jp

抄 録

我々はこれまで、全固体電池の正極材料複合化のための硫黄 / 多孔質炭素溶融混練プロセスを提案 した. 本研究では, 得られる複合粒子構造を制御する因子を調べるとともに, 複合粒子構造と電池 性能の関係を調査した、硫黄と多孔質炭素の配合割合を制御することで、複合粒子中の硫黄の存在 場所を多孔質炭素の細孔内から細孔内外に制御できることが分かった。硫黄の一部が細孔外にも存 在する複合粒子が高い充放電サイクル特性を示した.

ABSTRACT

We have proposed a hot-melt kneading process using sulfur and porous carbon to produce composite cathodes for all-solid-state batteries. In this study, we investigated a key parameter to control the structure of composite particles obtained from the hot-melt kneading process. Furthermore, we investigated the correlation between composite-particles structure and their electrochemical performance. By changing the weight ratio of sulfur to porous carbon, the two types of composite particles were produced: composite particles with almost all sulfur existing inside the pore; and those with a part of sulfur existing outside the pore. The latter composite particles exhibited higher cycle performance.

成果の概要

1. 緒言 全固体リチウム硫黄電池は、高い理論容量を 持つ硫黄を正極活物質に採用した全固体電池で あり、安全かつ高容量な次世代型二次電池とし て注目されている. この全固体リチウム硫黄電 池の作製時、正極材料である導電助剤、固体電

– 177 –

解質および硫黄を複合化することが必要とな る.我々は、この正極材料複合化プロセスとし て、生産性に優れた連続式溶融混練プロセスの 利用を提案した(Iwao et al., 2024).このプロ セスは熱と外力を粉体に加えることができる. そのため、低融点な硫黄を溶融させ、溶融した 硫黄と導電助剤の混練による複合粒子作製が可 能である.得られた複合粒子は、硫黄がバイン ダーとなり多孔質炭素(導電助剤)粒子が造粒 された構造であることが分かっている(Iwao et al., 2024).しかし、この複合粒子構造を制御す るための操作因子が不明確である.また、複合 粒子構造と電池性能の関係も不明確な部分が多い.

そこで本研究では, 硫黄と多孔質炭素の溶融 混練プロセスにおいて複合粒子構造を制御する 鍵因子を明確化すること,および複合粒子構造 と電池性能の関係を明らかにすることを目的と した.

2. 実験手法

本研究では、操作因子の制御が容易なバッチ 式の加熱混合機を用いた.複合化中の加熱温度 は、硫黄の融点(120°C)よりも高い150°Cに 設定した.加熱混合機に、硫黄と多孔質炭素の 混合粉体を加えて、複合粒子を作製した.本研 究では硫黄と多孔質炭素の配合比が鍵因子にな りうると考え、加える粉体の配合比を変更して 複合粒子を作製した.

初めに、複合化過程の粉体混練状態を、加熱 混合機の撹拌羽根にかかるトルクから評価し た.複合化過程の粉体混練状態は、得られる複 合粒子の構造に大きな影響を与えると考えられ る.そこで、複合粒子の評価だけでなく、複合 化過程の評価も本研究では行った.次に、複合 粒子の細孔容積を、ガス吸着法を用いて測定し た.複合粒子の細孔容積と多孔質炭素原末の細 孔容積の差が、細孔内に浸透した硫黄体積に相 当するとして、硫黄の細孔内浸透率を算出した. また作製された複合粒子と硫化物固体電解質 (Li₃PS₄)を遊星ボールミルによって複合化し て正極材料を作製した.この正極材料を正極に、 Li-In 合金を対極に用いた全固体ハーフセルを 作製し,その充放電容量を評価することで,複 合粒子の電池性能を評価した.

3. 結果・考察

図1に得られた複合化過程の撹拌トルク測定 結果を示す. 多孔質炭素に対する硫黄の重量比 (S/C) が3以下では、撹拌トルクは低く、混合 時間に対してほぼ一定の挙動を示した.一方, S/Cが5を超えると、混合時間 0-20 s で撹拌ト ルクが増大し、20s以降ではトルクが減少した 後、混合時間に対してトルクがほぼ一定となる 挙動を示した. 混合時間 0-20 s での撹拌トル クの増大は硫黄の溶融によるものであり、20s 以降のトルクの減少は硫黄の分散によるものだ と考えられる. ここから 20s でのトルクを代 表トルクとして考え、この代表トルクと S/C の 関係を図2にまとめた.代表トルクはS/C=3 までは多孔質炭素原末と比べて同等であるが, S/Cが5を超えると代表トルクは急激に増大し た. ここから, S/C が5以上の粉体混練状態は S/Cが3以下のそれとは異なっていると考えら れる. 複合化過程における溶融した硫黄の存在 状態として、「多孔質炭素の細孔内」および「細 孔外の多孔質炭素粒子間」が考えられる.そこ で S/C が 3 以下では、溶融した硫黄の大半は細 孔内へ浸透したため, 撹拌トルクが多孔質炭素 原末と同等であったと考えた、この仮説を検証 するために, 複合粒子の細孔特性の評価を次に

Fig. 1 Mixing torque at various S/C mass ratio.

行った.

細孔特性の解析のため,式(1)で定義した硫 黄の細孔内浸透率 W_Eを求めた.

$$W_{\rm E} = (V_{\rm raw} - V_{\rm cp}) / (W_{\rm S}/\rho)$$
(1)

 V_{raw} , V_{cp} は多孔質炭素 1g 当たりの多孔質炭素 原末と複合粒子の細孔容積である. W_{S} は多孔 質炭素に対する硫黄の重量比 (S/C) で, ρ は 硫黄の密度 2.1 g/cm³ (ICSC 1166, 2000) である. 多孔質炭素原末と複合粒子の細孔容積の差が, 細孔内に浸透した硫黄体積に相当するという考 えのもと,式(1) で硫黄の細孔内浸透率を算出 した. 図3 に硫黄の細孔内浸透率の算出結果を 示す. 硫黄の細孔内浸透率は, S/C = 1 および 2 の複合粒子では硫黄の細孔内浸透率が 0.9 を 超えてほぼ一定であり,複合粒子内の大半の硫

Fig. 2 Representative torque at different weight ratio of sulfur. Representative torque was defined as the maximum torque.

Fig. 3 Ratio of sulfur existing inside the pore in composite particles.

黄が細孔内に存在することが分かった.一方, S/Cが3を超えると,細孔内浸透率が減少し始めた.ここから,S/Cが3を超える複合粒子では, 複合粒子内の一部の硫黄が細孔外の粒子間に存 在する構造であることが分かった.この結果から,硫黄と多孔質炭素の配合比を変えることで, 複合粒子の構造を制御できることが分かった.

図2の結果から考えた、S/Cが3以下では溶融した硫黄の大半は細孔内へ浸透したという仮説を、図3の結果から考察した、S/Cが1および2では、硫黄の細孔内浸透率が0.9以上、S/Cが3では硫黄の細孔内浸透率が0.77であったことから、S/Cが3以下では溶融した硫黄の大半は細孔内へ浸透したという仮説はおおむね正しかったと考えられる。細孔内浸透率が0.77のS/C=1および2と、細孔内浸透率が0.77のS/C=3の違いを撹拌トルクからは区別できなかったが、細孔内浸透率が0.6を下回ったS/C=5と細孔内浸透率が0.77以上のS/C=3以下の違いは区別可能であった。ここから、複合化過程の撹拌トルクの測定によって大まかに複合粒子の構造を推定できることがわかった。

全固体ハーフセルによって評価した複合粒子 の電池性能測定結果を図4に示す.ここで、容 量は複合正極層1g当たりで整理した.S/Cを 増やすと活物質である硫黄の量が増えるため、 正極層1g当たりの容量が増えると考えられる. しかし、28サイクル目までの電流密度を変化 させた測定では、S/C=2の複合粒子が最も高 い容量を示した.これは、一部の硫黄が細孔外 に存在するS/C=3の複合粒子よりも、大半の

Fig. 4 Discharge capacities of composite particles.

硫黄が細孔内に存在する S/C = 2 の複合粒子の 方が,硫黄に電子が供給されやすいためだと考 えられる.一方,充放電サイクルを重ねた後の 100 サイクル目では S/C = 3 の複合粒子が最も 高い容量を示した.サイクルを重ねた際の容量 劣化要因として,硫黄と固体電解質間の不可逆 な副反応 (Gamo et al., 2022) が報告されている. S/C = 3 の複合粒子では,細孔外の硫黄によっ て固体電解質に電子が供給されにくくなったた めに,副反応が起きにくくなり,100 サイクル 目で最も高い容量を示したと考えられる.

4. 結言

硫黄と多孔質導電助剤の配合比を制御するこ とで、複合粒子中の硫黄の存在場所を多孔質炭 素の細孔内と細孔外に制御できると分かった. また複合化過程の撹拌トルク測定結果から、複 合粒子構造のおおまかな推定が可能であること がわかった.電池性能については、硫黄が細孔 内に存在する複合粒子構造が高い初期容量を示 したが,サイクルを重ねた後は,一部の硫黄が 細孔外に存在する複合粒子構造が高い容量を示 した.

今後は他の操作パラメータも検討し,硫黄と 多孔質炭素の二軸溶融混練プロセスによる複合 化について,最適な設計方針を明らかにする.

参考文献

- Gamo H., Hikima K., Matsuda A., Understanding decomposition of electrolytes in all-solid-state lithium–sulfur batteries, Chemistry of Materials, 34 (2022) 10952–10963. https://doi.org/10.1021/acs.chemmater.2c02926
- ICSC 1166, イオウ(硫黄),国際化学物質安全性カード (ICSC), 2000, CAS 番号 7704-34-9.
- Iwao M., Miyamoto H., Nakamura H., Hayakawa E., Ohsaki S., Watano S., Continuous compositing process of sulfur/conductive-additive composite particles for allsolid-state lithium sulfur batteries, Advanced Energy and Sustainability Research, (2024) 2200206. https://doi.org/10.1002/aesr.202200206

<u>外部発表成果</u>

口頭・ポスター発表

- 仲村 英也, 巌 元志, 早川 栄二, 大崎 修司, 綿野 哲, "全固体リチウム硫黄電池用正極 材料の連続作製プロセスの開発", 粉体工学 会 2023 年度春季研究発表会(May 15-16, 2023), 口頭.
- 巌元志,宮本大海,仲村英也,早川栄二, 大崎修司,綿野哲, "硫黄と電子導電助剤 の加熱溶融混錬プロセス",2023年度粉体 操作に伴う諸現象に関する勉強会(July 27– 29,2023),口頭.
- 巌元志,仲村英也,大崎修司,綿野哲, "硫 黄と多孔質導電助剤の溶融混練による複合 化と全固体電池への応用",化学工学会第 89年会(March 18–20, 2024), 口頭.

- Motoshi Iwao, Hiromi Miyamoto, Hideya Nakamura, Eiji Hayakawa, Shuji Ohsaki, Satoru Watano, "Sulfur/conductive-additive compositing process for all-solid-state lithium sulfur batteries",大阪公立大学国際シンポジ ウム (Sep. 20–21, 2023), Poster.
- Motoshi Iwao, Hiromi Miyamoto, Hideya Nakamura, Eiji Hayakawa, Shuji Ohsaki, Satoru Watano, "Hot-melt kneading of sulfur and conductive additive for all-solid-state lithium sulfur batteries", Partec2023 (Sep. 23–25, 2023), Oral.
- Hideya Nakamura, Motoshi Iwao, Hiromi Miyamoto, Eiji Hayakawa, Shuji Ohsaki, and Satoru Watano, "Compositing sulfur with conductive-additive particles for all-solid-state lithium sulfur batteries by using continuous hot-melt kneading process", AIChE 2023 (Nov. 5–10. 2023), Oral.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 181-186 /https://doi.org/10.14356/hptf.22503

HPTF22503

ミクロ相分離両相を用いる異種ナノ粒子の自在集積

Self-Assembled Structures of Heterogeneous Nanoparticles Using Microphase Separated Structures

援助対象者 Scholarship Student: 大毛 瑞貴 Mizuki OHKE

山形大学大学院理工学研究科 博士課程後期 1 年 Graduate School of Science and Engineering, Yamagata University, PhD student (D1) E-mail: s231231d@st.yamagata-u.ac.jp

研究指導者 Academic Leader:

松井 淳 Jun MATSUI

教授, Professor E-mail: jun_m@sci.kj.yamagata-u.ac.jp

抄 録

ブロック共重合体 (BCP) は異種ブロック間のミクロ相分離によって lamellar 構造や cylinder 構造 を形成する.本研究では機能性分子として知られる catechol のみからなる BCP の合成を目的とし, catechol 誘導体である dopamine acrylamide (DOPAm)の無保護可逆的付加開裂連鎖移動 (RAFT) 重合により,マクロ連鎖移動剤である pDOPAm-CTA の合成を達成した.さらに,保護 DOPAm を 伸長させることで, p(DOPAm-*b*-protected-DOPAm)の合成を達成した.

ABSTRACT

Block copolymers (BCPs) form lamellar, sphere, and cylinder structures via microphase separation between each block. Our motivation is the synthesis of a block copolymer composed only of catechol derivatives. Thus, in this study, we report a synthesis of poly (dopamine acrylamide) (pDOPAm) via controlled reversible addition–fragmentation chain transfer (RAFT) polymerization of DOPAm without a protective group using DMF as the solvent. Furthermore, we synthesized the block copolymer consisting solely of catechol derivatives.

成果の概要

1. 背景と目的 本研究ではミクロ相分離両相を用いた異種ナ ノ粒子の自在集積のためのプラットフォーム構 築を最終目的としている.ブロック共重合体 (BCP)は異種ブロック間のミクロ相分離によっ て lamellar 構造や cylinder 構造を形成する.そ

- 181 -

のため、機能性モノマーを導入することで BCP の相分離構造に機能性を付与することが 可能となる.機能性モノマーとして, catechol 誘導体を用いた BCP が数多く報告されている. catechol は粒子接着特性や酸化還元特性を持つ ことから、BCPの相分離構造中へのナノ粒子 の導入や合成が報告されている、そこで、我々 は catechol 誘導体のみからなる BCP を用いる ことで, BCP が形成する相分離の両相へ異種 ナノ材料を集積できると考え、研究を進めてい る. catecholの機能性は OH 基が基本となるた め, OH 基を保護することで反応性を押さえた catechol と無保護の catechol からなる BCP を創 製することで目的となる自在集積プラットホー ムの構築が可能と考えた、そこで、本研究では まず, OH 基を保護しない catechol 誘導体を RAFT 重合により合成を達成した.続いて合成 された無保護カテコールポリマー (pDOPAm-CTA)薄膜を作製し、ナノ粒子の集積を検討し た. Catechol の還元性を用い銀イオンの還元と 集積させることで膜の表裏の光沢が異なったヤ ヌス状の光沢膜が得られた.続いて、ミクロ相 分離両相を用いた異種ナノ粒子の自在集積に向 けた無保護カテコールと保護カテコールからな る BPC (AA' type BCP) の合成を行った結果を 報告する.

2. 実験

2.1 poly(dopamine acrylamide)-CTA (pDOPAm-CTA)の合成

モノマーとして DOPAm を DMF に溶解させ,

連鎖移動剤として2-cyano-2-propyl dodecyltrithio carbonate (CTA) および開始剤として 10 mmol%の AIBN を加え60°Cで所定時間反応させることで重合を行った.液体窒素で急冷したのち,大気解放することで重合を停止した. 重合溶媒を濃縮し、貧溶媒としてジエチルエーテルを用い、再沈殿操作によりポリマーを精製した.得られたポリマーは¹H-NMR および紫 外可視吸収(UV-vis)測定により同定し、ゲル 透過クロマトグラフィー(GPC)によりポリス チレン換算分子量が数万程度のマクロ連鎖移動 剤(pDOPAm-CTA)を得た(スキーム1).

2.2 pDOPAm-CTA 薄膜および無電解蒸着を 用いた粒子集積手法

合成した pDOPAm-CTA を 5 wt% の DMF 溶 液を作製し、スピンコート法を用いてガラス基 板あるいはシリコン基板上に 100 nm 程度の薄 膜を成膜した.成膜した薄膜の残存溶媒を除去 するために真空条件下で 90°C,2時間アニー ルを行った.200 mM 硝酸銀水溶液に薄膜を浸 漬させたのち、密閉容器内で 80°C,所定時間 アニールを行った.

2.3 poly(dopamine acrylamide-*b*-protecteddopamine acrylamide) (pDOPAm-*b*-protected-DOPAm) の合成

DOPAm と triethyl silane (TES) の反応によ り DOPAm のヒドロキシ基を TES 基により保 護した protected DOPAm を合成し, AIBN を開 始剤, pDOPAm-CTA を連鎖移動剤とした

Scheme 1 Synthesis of pDOPAm-CTA.

Scheme 2 Synthesis of protected-DOPAm and p(DOPAm-b-protected-DOPAm).

RAFT 重合により p(DOPAm-b-protected-DOPAm) を合成した.その詳細の合成手順を以下に示す. DOPAm (4.00 g) を DMF (40.0 mL) に溶解し, 0°C で攪拌した. この溶液にトリエチルアミン (TEA) を 9.63 mL 加え、次いで TES (8.00 mL) を滴下して加え、1時間攪拌させた. その後反 応混合物を20°Cで2時間攪拌した.分液操作 後、液体クロマトグラフィー(ヘキサン:酢酸 エチル=3:1) により精製した. 続いて, protected DOPAm を DMF に溶解させ連鎖移動 剤として 1 mol% の pDOPAm-CTA および開始 剤として 10 mmol%の AIBN を加え 60℃で 12h反応させることで重合を行った.重合溶媒 を濃縮し、貧溶媒としてメタノールを用い、再 沈殿操作によりポリマーを生成した.得られた ポリマーを¹H-NMRにより同定し、ゲル透過 クロマトグラフィー (GPC) によりポリスチレ ン換算分子量が29000. 分子量分布が1.32のポ リマー (pDOPAm-b-protected-DOPAm) を得た (スキーム2).

3. 結果・考察

3.1 pDOPAm-CTA の重合挙動の検討

pDOPAm-CTA のリビング性を検討するため, ¹H NMR および GPC 測定によりモノマー転化 率や分子量の評価を行った.重合初期と考えら れる 60 min まででは、数平均分子量が 5400 程 度であった.擬一次反応プロットにおいて 120 min より長い重合時間にて直線的にモノ マーが消費されていることが明らかとなった (図 1A).さらに、数平均分子量が時間に対し

Fig. 1 A: First-order kinetics of the RAFT polymerization of dopamine acrylamide. B: Number-average molecular weight (*M*n) and molecular weight dispersity (*M*w/*M*n) of pDOPAm vs. the monomer conversion rate.

て直線的に増加し,分子量分布が1.4以下であった(図1B). これより,重合時間が120 min 以上で十分に重合が制御されていると考えられる. 先行研究において,DMF が catechol の OH 基と水素結合を形成することが報告されている^{II}. したがって重合溶媒として用いた DMF が pDOPAm-CTA の OH 基を"on-demand 保護" したことで副反応を抑制し,無保護 RAFT 重 合が達成できたと考えられる. 3.2 pDOPAm-CTA の特性評価

重合時間が 360 min のポリマーを再沈殿精製 したのち, UV-vis 測定により pDOPAm-CTA の 構造評価を行った. $\lambda = 290$ nm 付近に catechol に由来する吸収ピークが観察された(図 2). 一方で,二分子架橋に由来する $\lambda = 340$ nm の吸 収や quinone 構造に由来する $\lambda = 390-395$ nm の

Fig. 2 UV-vis spectrum of pDOPAm.

Fig. 3 DSC curve for the third heat scan of pDOPAm.

吸収が見られなかったことから、得られた pDOPAm-CTAの catechol 基が酸化されていな いことが明らかとなった^[2,3]. 続いて、 pDOPAm-CTAの熱物性を評価するため、示差 走査熱量(DSC)測定を行った. pDOPAm-CTAのDSCスペクトルは 60° C付近にベース ラインシフトを示した(図3). これはガラス 転移温度であり、既報の結果と一致している^[2].

3.3 pDOPAm-CTA 薄膜を用いた無電解蒸着 によるナノ粒子集積によるヤヌス光沢膜の作 製

スピンコート法によりガラス基板上に成膜した pDOPAm-CTA 薄膜は無色透明であった(図 4A).一方で,硝酸銀水溶液に浸漬させ,24時 間アニールを行ったところ表面(空気界面)で は金光沢を,裏面(基板界面)では銀光沢を示 した(図4B,C).それぞれの界面における反 射率測定を行ったところ,金箔および銀プレー

Fig. 4 Images of pDOPAm thin films on glass substrates. Front side of the films after thermal annealing (A) under vacuum and (B) in aqueous AgNO₃ for 24 h.
(C) Back side of the film shown in (B).

Fig. 5 Reflectance spectra of the (A) front (gold metallic luster) and (B) back sides (silver metallic luster) of a pDOPAm thin film with deposited Ag. The reflectance spectra of an Au foil and Ag plate are presented as references. The electroless deposition of Ag was carried out at 80°C for 24 h using aqueous AgNO₃.

Fig. 6 Cross-sectional SEM images of a pDOPAm thin film after electroless silver deposition ((A) magnification ×40000 and (B) magnification ×30000).

トに類似した形状であった(図5).ここで, 表面の走査型電子顕微鏡(SEM)観察により 粒径が70 nm 程度の銀ナノ粒子が形成されてい ることが観察された. さらに、薄膜の断面 SEM 観察を行ったところ、空気界面側と基板 界面側で銀の形態が異なることが明らかとなっ た(図6). これより、表面から観察すると、 銀ナノ粒子のプラズモン共鳴による 400 nm 以 上の可視光の反射と、pDOPAm-CTAの可視光 吸収^[4]の相乗効果によって、金泊に類似した 散乱および光沢が得られたと考えられる.一方 で, 裏面から観察すると, プレートライクな銀 の堆積層が反射ミラーとして作用することで可 視光が反射し、銀色の光沢が得られたと考えら れる.以上の結果より,様相が異なるナノ粒子 を集積させることで、特異的な光学特性を発現 することが明らかとなった.

3.4 ミクロ相分離構造を形成する p(DOPAm*b*-protected-DOPAm) の合成

合成した pDOPAm-CTA を連鎖移動剤とした RAFT 重合により, protected-DOPAm との BCP の合成を検討した.生成物の¹H NMR より, TES 保護基(0.6–1.2 ppm)に関連するピーク が観測され,芳香環(6.2–6.8 ppm)に帰属され る積分値が増大した.また,UV-vis 測定によ り catechol ブロックが酸化されていないことが 示された(図7).以上の結果より p(DOPAm-*b*protected-DOPAm)の合成を達成した.現在,こ の BCP 薄膜を作製し,形成されたミクロ相分 離構造中に異種ナノ粒子を集積させたハイブ

Fig. 7 UV-vis spectrum of p(DOPAm-*b*-protected DOPAm).

リッド材料についての論文を執筆している.今後は,金属ナノ粒子のプラズモン共鳴による電場増強を利用した,新規機能性材料の構築へと 展開を進めていく.

3.5 まとめ

多機能性分子のcatechol誘導体である pDOPAm-CTA の無保護 RAFT 重合を達成した. 薄膜化し, 硝酸銀水溶液中に浸漬させ, アニー ルすることで様相が異なる銀ナノ粒子の無電解 集積化手法を見出した. これより catechol の可 視光吸収と銀ナノ粒子のプラズモン共鳴の相乗 効果によって銀のみで金を呈色するヤヌス状 フィルムの構築に成功した. さらに, 合成した pDOPAm-CTA をマクロ連鎖移動剤として利用 し, protected-DOPAm を伸長させることで AA' type BCP である p(DOPAm-b-protected-DOPAm) の合成を達成した.これより,形成された相分 離構造の両相に機能性を付与し、異種ナノ粒子 をそれぞれの相に集積させることを進めてお り、現在、異種ナノ粒子の自在集積に関連する 論文を執筆中である. 今後は、金属ナノ粒子の プラズモン共鳴による電場増強を利用した異種 ナノ粒子の機能拡大をするような新規機能性材 料の構築へと展開を進めて行く予定である.

参考文献

[1] Jiménez N., Ruipérez F., González de San Román E.,

Asua J.M., Ballard N., Fundamental insights into free-radical polymerization in the presence of catechols and catechol-functionalized monomers, Macromole-cules, 55 (2022) 49–64.

https://doi.org/10.1021/acs.macromol.1c02103

- [2] Patil N., Falentin-Daudré C., Jérôme C., Detrembleur C., Mussel-inspired protein-repelling ambivalent block copolymers: controlled synthesis and characterization, Polymer Chemistry, 6 (2015) 2919–2933. https://doi.org/10.1039/C5PY00127G
- Burzio L.A., Waite J.H., Cross-linking in adhesive quinoproteins: studies with model decapeptides, Biochemistry, 39 (2000) 11147–11153. https://doi.org/10.1021/bi0002434
- [4] Takahashi S., Kishikawa K., Kohri M., External stimulus control of structural color visibility using colloidal particles covered with a catecholic polymer shell layer, Polymer Journal, 54 (2022) 1039–1043. https://doi.org/10.1038/s41428-022-00647-7

外部発表成果

口頭発表

1. 大毛瑞貴,赤石良一,永野修作,石崎学,

栗原 正人, 江部 日南子, 松井 淳, "異種材 料集積プラットフォームに向けた逐次機能 化 BCP の合成と自己組織化", 第 71 回応用 物理学会春季学術講演会(Tokyo, Mar. 22– 25, 2024) 24p-1BC-8.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 187-191 /https://doi.org/10.14356/hptf.22504

HPTF22504

多孔性錯体微粒子への薬物包接メカニズムの解明 **Elucidation of Drug-Loading Mechanism in MOF Particles**

援助対象者 Scholarship Student: 大島 一輝 Kazuki OHSHIMA

> 大阪公立大学大学院工学研究科 博士課程後期1年 Graduate School of Engineering, Osaka Metropolitan University, PhD student (D1) E-mail: su23268q@st.omu.ac.jp

研究指導者 Academic Leader: 大崎 修司 Shuji OHSAKI 准教授, Associate Professor

E-mail: shuji.ohsaki@omu.ac.jp

抄 録

多孔性錯体微粒子 (MOF)の薬物キャリア能にとって肝要な薬物包接は液相吸着で行われるものの、 MOF-薬物 – 溶媒間相互作用と包接能との関係は未解明である.本研究では、溶媒と MOF の官能 基を切り口に、実験的 / 数値解析的に MOF への薬物包接機構を検討した.実験的に溶媒の極性と 官能基の電子供与 / 求引性が薬物包接能に重要な因子であることが見出された. さらに, 数値解析 では MOF- 薬物 – 溶媒間親和性のバランスが薬物包接能に大きく寄与することを明らかにした.

ABSTRACT

Drug-loading to MOFs (Metal-organic-frameworks) is generally conducted in liquid-phase adsorption. However, the relationship between MOF-drug-solvent interactions and drug-loading capacity has not been fully investigated. This study experimentally and numerically investigated the mechanism of drug encapsulation in MOF pores, focusing on solvents and functional groups of MOFs. Experimentally, it was revealed that the polarities of solvents and the electron-donating/withdrawing property of MOF ligands were essential factors for the drug-loading capacity. Furthermore, molecular simulations suggested that the balance of MOF-drugsolvent affinity contributed significantly to the drug-loading mechanism.

成果の概要

近年,多孔性配位錯体 (Metal-Organic Framework, MOF)の医薬分野への薬物キャリ アとしての応用が注目を浴びている. MOFと

は、金属イオンと有機配位子が自己集積するこ とによって合成される多孔性材料である. MOF の特徴として、大きな比表面積や規則的・ 機能的なナノ細孔、多種多様な形状と構造を有 すること、細孔径制御が可能であることが挙げ

- 187 -

られる.これまでに我々の研究で, MOFの一 種である ZIF シリーズに難水溶性薬物を導入し た粒子を薬物リリースに用いることで、難水溶 性薬物の溶解度を大きく向上させることを報告 しており (Ohshima et al., 2022), 医薬分野で様々 な MOF の薬物キャリアへの応用が期待されて いる. MOFへの薬物包接は一般的に液相吸着 法で簡便に行われている.この MOF への薬物 包接には溶媒が大きな役割を果たしていると予 見されるものの, MOF-薬物 - 溶媒の相互作用 と包接能との関係. その影響因子は未解明であ る. そこで、本研究では、MOFへの薬物包接 に大きく寄与すると予見される溶媒の双極子 モーメントと MOFの官能基を切り口に, MOF- 薬物 – 溶媒間の親和性に着目すること で, MOFへの薬物包接機構を実験的および数 値解析的に検討した.

1. 研究方法

1.1 実験材料

薬物にイブプロフェン(IBU, BASF Pharma Solutions)を使用し、溶媒として、エタノール(EtOH, 99.5%)、メタノール(MeOH, 99.5%)、アセトン(Acetone, 99.5%)は富士フィルム和光純薬(株)で購入したものを使用した.
MOFの金属イオンにはジルコニウム四塩化物(Sigma-Aldrich Co. LLC., 99.5%)、配位子には2-アミノテレフタル酸(Sigma-Aldrich Co. LLC., 99.0%)、テレフタル酸(富士フィルム和光純薬(株), 99.0%)、2-ニトロテレフタル酸(東京化成工業(株), 98.0%)をそれぞれ使用した.

1.2 実験方法

本研究では、対象 MOF として、有機配位子 の官能基を種々変更可能なテレフタル酸を骨格 とする Universitetet i Oslo-66-X (UiO-66-X, X = NO₂, NH₂, H)を選定した. 薬物包接実験には、 合成した UiO-66-X を 60°C, 24 h, 10⁻² kPa 以 下の条件で前処理した UiO-66-X 粒子を用いた. モデル薬物として、解熱鎮痛剤として汎用的な イブプロフェン (IBU)を選定した. 溶媒は、

プロトン性溶媒として EtOH, MeOH, 脱イオ ン水,非プロトン性溶媒として Acetone を選定 した. 薬物 IBU の濃度条件は,水溶媒では 10 mg-drug/L-solvent, その他の溶媒では 6000 mg-drug/L-solvent とした. UiO-66-Xの粒 子濃度はすべての包接実験において質量比 drug: UiO-66-X = 3:2 になるように調整し、マ グネティックスターラーで48時間撹拌した. 懸濁液を採取し, 遠心分離を行うことで, 粒子 と薬物を含む溶液に分離した.薬物を含む溶液 を適切に希釈し、UV-Vis (UV-1800, (株) 島 津製作所)測定を用いて薬物包接量[wt%]を 算出した.また,得られた粒子に対して,粉末 X 線回折 (SmartLab, (株) リガク), 熱重量分 析(DTG-60H,(株)島津製作所),SEM 観察 (JXA-8530F,(株)日本電子)を行い、異なる 双極子モーメントを有する溶媒 /MOFの官能基 の組み合わせで MOF への薬物包接能を総合的 に評価した.

1.3 シミュレーション手法

本研究では, MOF 細孔内での相互作用と薬 物包接可能 / 不可の関係を定量的に評価するた め, 多目的コード RASPA (Dubbeldam, 2016) を用いた、化学ポテンシャル、体積、温度一定 のグランドカノニカルモンテカルロ (GCMC) 法と粒子数,体積,温度一定のカノニカルモン テカルロ (CMC) 法を組み合わせた数値解析 を行った. Monte Carlo (MC) 法では, MCの 試行として、フレイムワーク内での分子の移動 および回転,挿入/削除の試行を同じ頻度で計 算した. 初期サイクル数を 10⁴-10⁵. 平衡状態 のサイクル数を 10³-10⁴ とし, GCMC/CMC 法 では温度 298.0 K で計算を行った. GCMC/ CMC法において、原子間相互作用には Lennard–Jones (LJ) ポテンシャルとクーロン ポテンシャルを採用した. LJ パラメータεお よび *σ* は Universal Force Field/TraPPE から取得 した. 部分電荷はそれぞれ IBU, MeOH, Acetone に関してはそれぞれ報告例 (Bahamon et al., 2017; Stubbs et al., 2004) を参照し、それ

以外は電荷平衡法を用いて計算した.GCMC 法では,種々のMOF・溶媒の組み合わせで種々 圧力を変更し,系全体のポテンシャルエネル ギーが最安定となる溶媒分子数を決定した.こ の溶媒分子数を基に,CMC法では薬物分子の 有無によるポテンシャルエネルギーへの影響を 解析するため,溶媒分子のみの系と薬物/溶媒 分子の系でそれぞれ計算を行った.細孔内の IBUの有無により変化するMOF-薬物 – 溶媒 間相互作用への影響を解析し,実験的な薬物包 接能との関係を比較・検討した.

2. 研究成果

2.1 薬物包接能への溶媒/官能基の影響

異なる双極子モーメントを有する溶媒および 種々の有機配位子の官能基の組み合わせで実験 を行い、その結果を表1に示す、包接可能な条 件は薬物包接量[wt%].包接不可の場合は×(包 接量0wt%)で示している.包接可能/不可の 条件における実験前後において, XRD 測定に よる MOF 試料の結晶性や SEM 観察による表 面形状に大きな変化は見られなかった.また, 薬物包接粒子では、熱重量分析から原末に比べ て包接された薬物による質量減少を確認してい る.いずれの UiO-66-X においても EtOH から Acetone にかけて溶媒の双極子モーメントが増 加すると、薬物包接量が減少する傾向にあるこ とが分かる.これは、溶媒の双極子モーメント の増加に伴い、電子供与性・求引性の官能基が 誘起され分極を起こすことで、MOF 配位子の 芳香環の電子密度が減少し, IBU の芳香環と配 位子の芳香環の間に働く π-π スタッキングが弱 くなることに由来すると考えられる.加えて, IBU の有するカルボキシル基は強く負に分極し

Table 1 IBU-loading capacity of UiO-66.

[wt%]	EtOH	MeOH	H_2O	Acetone
UiO-66-NH ₂	42.86	×	×	×
UiO-66-H	17.80	5.906	3.091	×
UiO-66-NO ₂	15.68	×	1.220	×

ているため、電子求引性が強くなるに伴い、 IBUと配位子間の静電的相互作用は徐々に減少 し、MOF細孔内での薬物の安定性は低下する と考えられる.また、官能基に着目すると、 NH₂の電子供与性から NO₂の求引性にかけて 包接量が小さくなる傾向にある.これは、配位 子の官能基による芳香環の電子密度の相対的な 減少による、MOF-薬物間のπ-π相互作用の低 下が包接量減少の要因であると考えられる.こ のように、MOFの薬物包接には溶媒の双極子 モーメントと配位子の官能基による芳香環の電 子密度変化による相互作用、薬物との静電的相 互作用が寄与することが実験的に示された.

2.2 薬物包接能を決定づける影響因子の特定

本研究では細孔内の薬物分子の存在の有無で 変化する MOF- 薬物 - 溶媒間のポテンシャル エネルギー差に着目し、薬物包接能への MOF-薬物 – 溶媒間親和性の影響を定量的に解析し た.表1に示した MOF と溶媒の組み合わせで 計算を行い, MOF- 薬物 - 溶媒間親和性を表す, 薬物 – 溶媒間および MOF- 薬物間ポテンシャ ルエネルギー差の関係を図1に, MOF-溶媒間 および MOF- 薬物間ポテンシャルエネルギー 差の関係を図2に示す.プロット(●/×)は 表1における MOFと溶媒の組み合わせにおけ る実験的な包接可能 / 不可に対応したものであ る.図1より、実験における薬物包接可能な条 件(●)では, MOF-薬物間のポテンシャルエ ネルギー差は数 1-3 kJ/atom 程度であり、薬物 - 溶媒間ポテンシャルエネルギー差は相対的に 大きな値を有することが見て取れる.図2より, MOF-溶媒間のポテンシャルエネルギー差は、 約 0.1 kJ/atom の比較的小さい値を有する.以 上の結果は、薬物包接可能条件では薬物と溶媒 が比較的強く相互作用する中で、細孔内での溶 媒への影響が低く、1-3 kJ/atom 程度の比較的 強い MOF- 薬物間相互作用で、細孔内で薬物 が安定化したと考えられる.一方,薬物包接不 可な条件(×)の場合、相対的に MOF- 溶媒

Fig. 1 Relationship between potential energies of drugsolvent and MOF-drug.

Fig. 2 Relationship between potential energies of MOF– solvent and MOF–drug.

間ポテンシャル差が大きな値を有し,薬物 – 溶 媒間相互作用は比較的小さな値をとっている. これは,細孔内での MOF- 溶媒間親和性が相 対的に大きいことで, MOF 細孔内で薬物が安 定しにくく,包接不可となったと考えられる.

3. まとめ

MOF の薬物包接機構の解明に向けて,溶媒 の双極子モーメントと配位子の官能基に着目し た実験的な薬物包接能の検討および数値解析を 用いた MOF- 薬物 – 溶媒間ポテンシャルエネ ルギーの解析を行った.その結果,MOF の薬 物包接について,実験的に溶媒の双極子モーメ ントと MOF の官能基が薬物包接量に大きく影 響していることが示された.数値解析では薬物 存在による MOF- 薬物 – 溶媒間親和性のバラ ンスが薬物のエネルギー的安定性および薬物包 接能に大きく寄与することを明らかにした.以 上の結果は MOF の薬物包接機構の解明におい て重要な知見であり,吸着 / 分離機構に波及す る成果である.

参考文献

Bahamon D., Carro L., Guri S., Vega L.F., Computational study of ibuprofen removal from water by adsorption in realistic activated carbons, Journal of Colloid and Interface Science, 498 (2017) 323–334.

https://doi.org/10.1016/j.jcis.2017.03.068

Dubbeldam D., Calero S., Ellis D.E., Snurr R.Q., RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials, Molecular Simulation, 42 (2016) 81–101.

https://doi.org/10.1080/08927022.2015.1010082

- Ohshima K., Ohsaki S., Nakamura H., Watano S., Mechanism of solubility enhancement of poorly water-soluble drugs triggered by zeolitic imidazolate frameworks, Chemical and Pharmaceutical Bulletin, 70 (2022) 383–390. https://doi.org/10.1248/cpb.c22-00020
- Stubbs J.M., Potoff J.J., Siepmann J.I., Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes, The Journal of Physical Chemistry B, 108 (2004) 17596–17605. https://doi.org/10.1021/jp049459w

外部発表成果

口頭・ポスター発表

- 大島 一輝,大崎 修司,仲村 英也,綿野 哲, "金属有機構造体 UiO-66 シリーズへの薬物 包接メカニズムの解明",化学工学会第88 年会(Tokyo, Japan, Mar. 15–17, 2023),ポス ター発表, PA118.
- 大島 一輝,大崎 修司,仲村 英也,綿野 哲, "多孔性配位錯体 UiO-66 シリーズへの薬物 包接 機構の解明", 錯体 化学 若 手の 会 (Fukuoka, Japan, Aug. 2–4, 2023), 口頭発表, O-2,優秀講演賞受賞.
- 大島一輝,大崎修司,廣畑美緒,野村俊之, 仲村英也,綿野哲, "薬物封入 MOF 粒子 の合成と薬物送達能の評価",化学工学会第 54回秋季大会(Fukuoka, Japan, Sep. 11–13, 2023),口頭発表,F108.
- Ohshima K., Ohsaki S., Nakamura H., Watano S., "Experimental and Monte Carlo simulation investigation on elucidation of drug encapsulation mechanism into UiO-66 series", 国際シンポジウム (Osaka, Japan, Sep. 20–21, 2023), ポスター発表, D-64.
- 5. 大島 一輝, 大崎 修司, 仲村 英也, 綿野 哲,

"新規多孔性材料で薬物を運びます!",
 APPIE 産学 官 連携 フェア 2023 (Osaka,
 Japan, Oct. 12, 2023), ポスター発表, 33.

- Ohshima K., Ohsaki S., Nakamura H., Watano S., "Experimental and monte Carlo simulation study on elucidation of drug-loading capacity of UiO-66 series focusing on solvent and functional group of linkers", 2023 AIChE Annual Meeting (Orlando, USA, Nov. 5–10, 2023), Oral, 512a.
- 7. 大島 一輝,大崎 修司,仲村 英也,綿野 哲, "量子化学計算と MC 計算を組み合わせた MOF の薬物吸着現象の定量的解析",第32 回吸着シンポジウム「吸着冬の学校」 (Kanazawa, Japan, Dec. 6-7, 2023), 口頭発表, 3.
- 大島 一輝,大崎 修司,仲村 英也,綿野 哲, "多孔性配位錯体 UiO-66 シリーズへの薬物 吸着機構に関する実験および数値解析的検 討",第 36 回日本吸着学会研究発表会 (Kanazawa, Japan, Dec.7-8, 2023),口頭発表, 2-17.
- 大島 一輝,大崎 修司,仲村 英也,綿野 哲, "MOF の薬物包接能への溶媒の影響とラマ ン測定による薬物包接機構の検討",化学工 学会第89年会(Osaka, Japan, Mar., 2024), 口頭発表.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 192-196 /https://doi.org/10.14356/hptf.22505

HPTF22505

湿潤粉体流れの数値シミュレーションの基礎的研究

Fundamental Investigation of Numerical Simulation Method for Wet Powder Flow

智隆

援助対象者 Scholarship Student: 大津 智隆 **Tomotaka OTSU** 大阪公立大学大学院工学研究科 博士課程後期1年 Graduate School of Engineering, Osaka Metropolitan University, PhD student (D1) E-mail: su23163k@st.omu.ac.jp

研究指導者 Academic Leader: 仲村 英也 Hideya NAKAMURA 准教授, Associate Professor E-mail: hideyanakamura@omu.ac.jp

抄 録

湿潤粉体流れの DEM 計算手法は多岐にわたっているが、その統一的な評価はなされていない、本 研究では、既往の架橋形成距離と粒子接触時の液架橋力の計算手法を評価した。それぞれ2つの計 算手法を組み合わせた4つの計算手法を転動ドラム型混合器に適用した。計算結果の比較から、湿 潤粉体の計算手法は結果に影響すること、実験結果の比較から高液体量条件では液膜接触モデルが 実験結果をより適切に表現することがわかった.

ABSTRACT

The calculation methods of Discrete Element Method (DEM) for wet powder flow are diverse, and lacking a unified assessment. In this study, four calculation methods, combining two approaches for bridge formation distance and liquid bridge force during particle contact, were applied to a rotating drum mixer. Comparisons of the results revealed the significant impact of calculation methods for wet powder on the outcomes. Moreover, comparison with experimental data revealed that the Liquid Film Contact model (LFC) demonstrated the ability to accurately represent experimental results even under high liquid content.

成果の概要

1. 緒言

乾燥粉体に少量の液体を加えた湿潤粉体は幅 広い分野で用いられている. そのため、湿潤粉

体流れを精度良く計算できるシミュレーション 技術が必要とされている.離散要素法 (DEM) は、粉体を構成する個々の粒子について運動方 程式を解くことで, 粉体全体の運動挙動を求め る手法である. DEM は乾燥粉体挙動を精度良

- 192 -

Copyright © 2024 The Authors. Published by Hosokawa Powder Technology Foundation. This is an open access article under the CC BY 2.1 JP license (https://creativecommons.org/licenses/by/2.1/jp/).

く計算できることが、これまでに実証されてい る.しかし、湿潤粉体では強い付着力(液架橋 力)が作用するため、この液架橋力の計算が重 要となる.しかしながら、液架橋力を計算する ために必要な説明変数である液架橋特徴量(具 体的には架橋形成開始距離・液架橋体積・最小 架橋距離)と、粒子接触時の液架橋力の計算手 法が定まっておらず、種々の方法が乱立してい るという課題がある.

そこで本研究では湿潤粉体計算手法のうち, 液架橋が形成される距離である架橋形成開始距 離と,粒子接触時の液架橋力の計算手法に着目 した.本研究はこれまでに提案されている2種 類の架橋形成開始距離の計算手法(Gong et al., 2019; Tsunazawa et al., 2016)と粒子接触時の液 架橋力の計算手法(Li et al., 2011; Tsunazawa et al., 2016)を組み合わせた合計4種類の計算方 法を評価した.1粒子に関するフォースカーブ を基に,各計算手法が1粒子におよぼす付着エ ネルギーの違いを検討した後,湿潤粉体挙動の DEM シミュレーションを実施し,その結果を 評価した.

2. 実験条件

実験には中位径 2.18 mm の球形ガラスビー ズと表面張力係数 16.9 mN/m のシリコーンオ イルを用いた. ϕ 100 × 20 mm のドラムに 25 vol% の充填率となるようにあらかじめ液体 量が 0.5, 4.0 vol% となるように湿らせたガラ スビーズを充填して, 23 rpm で転動させた.

3. 計算手法

3.1 着目した4種類の計算手法の概要

本研究では、架橋形成距離の計算手法として、 固体粒子が持つ液膜同士が接触した時に、固体 間に液架橋が形成されるとする方法(Liquid Film Contact: LFC)(Tsunazawa et al., 2016)と、 粒子が持つ液膜がごく微小であるため接近時の 液架橋力を無視し、固体が接触した際に液架橋 が形成するとする方法(Solid Contact: SC)(Gong et al., 2019)に着目した. また、粒子接触時の 液架橋力の計算手法には一般的によく用いられ る接触力モデルである Hertz の弾性反発理論式 に,一定値の液架橋力を組み込む計算手法 (Hertz-Liquid-Bridge-force: H-LB)(Li et al., 2011)と,付着力項をファンデルワールス力の 型式で計算する JKR モデルによる計算手法(Li et al., 2011; Tsunazawa et al., 2016)に着目した. 本研究では二種類の架橋形成開始距離のモデル と二種類の粒子接触力モデルを組み合わせた合 計四種類の計算手法の検討を行った.図1に検 討した計算手法のフォースカーブを示す.

3.2 計算条件

計算条件は実験条件と同等とした. DEM の 計算は EDEM2022(Altair Engineering Inc.)を 用いた.計算は粒子生成後 0.5 秒静止させ, 2.5 秒間転動させる合計 3 秒行った.

4. 結果と考察

4.1 1粒子に作用する付着エネルギー Ead

はじめに、1粒子に作用する付着エネルギー を算出し,計算手法の違いを微視的に解析した. 付着エネルギーは、液膜に覆われた2粒子が法 線方向に接近しながら液架橋形成・固体粒子間 反発を経て、液架橋破断する過程に受ける力を 距離で積分した値として定義した(図 2). E_{ad} が大きいほど、高い付着性に相当する.図3に 異なる液体量と計算手法における Ead の比較を 示す.液体量が大きいと架橋の形成距離δ_fと 破断距離 δ_{rup} が長くなるため、 E_{ad} が増加する. 架橋形成距離の計算手法に着目すると、液膜接 触時に液架橋が形成されるため、LFC の方が SCよりも E_{ad} が大きく、付着性が高い、また、 LFC と SC における E_{ad} の差は架橋形成距離が 長くなる高液体量で顕著になる.一方,粒子接 触時の液架橋力の計算手法に着目すると, JKR と H-LB における Ead はほぼ等しい. これは固 体粒子接触時のオーバーラップ距離(粒子径の 10⁻⁶倍)が、液架橋長さ(粒子径の10⁻³倍) よりもはるかに小さいことに起因する. $\delta \ge 0$ の区間における付着エネルギーに着目すると、

Fig. 1 Schematic of the calculation methods for wet powder considered in this study.

Fig. 2 Definition of adhesion energy.

液体量, 距離によらず H-LB > JKR であり, H-LB の方が JKR よりも僅かに付着性が高い.

4.2 転動ドラム型混合機における湿潤粉体 挙動

図4に粒子を各粒子の速度で色分けした各種 計算手法の結果の一例を示す.架橋形成距離の 計算手法に着目すると,LFCのほうがSCに比 べて液架橋ができやすく,液架橋力によって粒 子が減速しやすいため粒子の速度が遅いことが わかる.一方,粒子接触時の液架橋力の計算手 法に着目すると,円筒壁面付近の粒子の速度は

Fig. 3 Comparison of adhesion energy between different models. $\delta_0/r = 1.38 \times 10^{-6}$ (JKR), 1.93×10^{-6} (H-LB).

H-LB のほうが JKR よりも速い. これは付着性 の高い H-LB の方が壁面に付着しやすく,回転 壁に引きずられやすいことに起因している. 以 上より,1粒子の付着エネルギーの検討で,差 が見られなかった粒子接触時の液架橋力の計算 手法も,顕著な差が見られた架橋形成距離の計 算手法も,どちらも湿潤粉体の計算結果に大き く影響することがわかった.

4.3 実験と計算結果の比較

図5に典型的な粉体層形状の一例と計算結果

Fig. 4 Snapshots of the calculation results for different models. Liquid content 4.0 vol%, 2.5 s from start of rotation, colored by particle velocity.

と実験結果の比較を示す.粉体層形状は透明円 盤に付着した粒子を除外した,ドラム内部の粉 体層の形状と定義した.液体量 0.5 vol% では, 計算手法によらず全ての計算手法が実験の粉体 層形状を表現できていることがわかる.一方, 液体量 4.0 vol% では,LFC のほうが SC よりも 実験結果に近い結果を示す.これは,高液体量 条件下では,粒子接近過程の影響が無視できな いことを示す.

5. 結言

1粒子に作用するフォースカーブおよび粒子 群の計算結果を基に、湿潤粉体の計算手法の影響を検討した.その結果、架橋形成距離の計算 手法と粒子接触時の液架橋力の計算手法が湿潤 粉体流れの精度に大きな影響を与えることがわ かった.また、計算と実験における粉体層形状 を比較した.その結果、液体量が多い場合、簡 易的な固体接触モデルでは実験結果を表現でき

Fig. 5 Typical shape of powder bed surface example and shape of powder bed surface at different liquid content for different calculation methods and experiment.

ないため,液膜接触モデルの使用が適している ことが示唆された.

参考文献

- Gong S., Zuo Z., Xie G., Lu H., Zhang J., Numerical simulation of wet particle flows in an intensive mixer, Powder Technology, 346 (2019) 301–315. https://doi.org/10.1016/j.powtec.2019.02.004
- Li S., Marshall J.S., Liu G., Yao Q., Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering, Progress in Energy and Combustion Science, 37 (2011) 633–668. https://doi.org/10.1016/j.pecs.2011.02.001
- Tsunazawa Y., Fujihashi D., Fukui S., Sakai M., Tokoro C., Contact force model including the liquid-bridge force for wet-particle simulation using the discrete element method, Advanced Powder Technology, 27 (2016) 652– 660. https://doi.org/10.1016/j.apt.2016.02.021

外部発表成果

口頭・ポスター発表

- Otsu T., Nakamura N., Ohsaki S., Watano S., "Fundamental investigation of numerical simulation method for wet powder flow", PARTEC2023 (Sep. 23–25, 2023), Poster.
- 大津 智隆,仲村 英也,大崎 修司,綿野 哲, "湿潤粉体挙動の数値シミュレーション手法

の基礎的検討", 化学工学会第88年会, 公 益社団法人化学工学会(Mar. 15–17, 2023), ポスター, 優秀賞受賞.

 大津 智隆,仲村 英也,大崎 修司,綿野 哲, "湿潤粉体 DEM シミュレーションにおける 粒子接近・接触過程の計算手法の検討", 2023 年度粉体操作に伴う諸現象に関する勉 強会,粉体工学会(Jul. 27–29, 2023),口頭 発表.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 197-201 /https://doi.org/10.14356/hptf.22506

HPTF22506

OCT その場観察に基づくスラリーの乾燥挙動の解明 **Elucidation of Slurry Drying Behavior Based on OCT In-situ Observation**

啓直

援助対象者 Scholarship Student: 黒田 啓真 Hiromasa KURODA 横浜国立大学大学院理工学府 博士課程後期1年 Graduate School of Engineering Science, Yokohama National University, PhD student (D1) E-mail: kuroda-hiromasa-gf@ynu.jp

多々見 純一 研究指導者 Academic Leader: Junichi TATAMI 教授, Professor E-mail: tatami-junichi-xv@ynu.ac.jp

抄 録

セラミックスの湿式成形ではスラリーの乾燥過程における割れや変形が問題である.本研究では、 不透明な物体の内部を観察可能な OCT と微小領域の力学特性を測定可能なナノインデンターを用 い、乾燥挙動の理解に必要な、乾燥過程におけるスラリーの内部構造変化と、乾燥体の力学特性を 観測する手法を確立した.添加バインダーの種類に起因した乾燥過程の内部構造変化の差異に依存 し、乾燥体の力学特性も異なることを明らかにした.

ABSTRACT

In wet forming of ceramics, cracking and deformation of the slurry during the drying process are critical issues. In this study, a technique for understanding drying behavior was developed by observing the internal structural changes of the slurry during the drying process using OCT, which can observe the inside of opaque objects, and by measuring the mechanical properties of the dried body using a nanoindentater, which can measure the microscopic mechanical properties. It was found that the mechanical properties of the dried body depended on the internal structural changes during the drying process caused by the type of binder added.

成果の概要

1. 緒言

セラミックスの湿式成形ではスラリーの乾燥

過程における割れや変形が問題であった。これ らの根本的解決のためには、乾燥中にスラリー 内部で生じる現象の理解に基づく制御が不可欠 である、そこで私は、不透明な物体の内部構造

– 197 –

をリアルタイム観察可能な OCT を用いたその 観察に基づいて、スラリーの乾燥挙動を解明す ることを目的として研究を行ってきた. その結 果,乾燥過程におけるスラリーの不均質な流動 や局所的な乾燥の進行が、割れや変形の原因で あることを明らかにした.

今後は、分散剤等の添加量を制御したスラ リーを用いて同様の観察を行い、粒子間相互作 用力が乾燥中の内部構造変化に及ぼす影響を明 らかにする.また、環境制御型ナノインデンター により、割れや変形に大きな影響を及ぼす乾燥 中のスラリーの力学特性を OCT 観察と同一視 野で評価することで、局所的な力学特性と内部 構造の関係を解明する.

2. 実験方法

本研究で用いるスラリー調製のために,まず, イオン交換水にシリカ粉体(KE-S-30,株式会 社日本触媒)を45 vol%になるように投入した のち,原料粉体に対して分散剤(PEI1800(富 士フィルム和光純薬株式会社))を0.4 mg/m² となるように添加した.次に,粉体に対して 5 wt%の溶液系バインダー(主成分 PVA,セル ナWF-804,中京油脂株式会社),もしくは 5 wt%のエマルジョン系バインダー(主成分ア クリル樹脂,セルナWN-405,中京油脂株式会 社)を添加して,ボールミルによりスラリーを 調製した.これらのスラリーをドクターブレー ド装置(DP-150,(有)サヤマ理研)で厚さ 1 mmのシート状に成形した.

このシート状 SiO₂ スラリーの乾燥過程にお ける内部構造を,SS-OCT (Swept-source optical coherence tomography)装置 (IVS-2000-WR, santec (株),分解能 3.7 μ m)と赤外線ヒーターを付 設した電子天秤 (UX1020H,島津製作所(株)) からなる OCT-TG 複合システムを用い,雰囲 気温度を 50°C と一定にして重量変化がなくな るまで 2 次元観察した.

その後, 乾燥体をスライドガラス上に固定し, TRIBOINDENTER[®](HYSITRON TI 980, ブル カージャパン株式会社)を用いて乾燥体表面に 動的ナノインデンテーションを行うことで力学 特性を測定した.動的ナノインデンテーション は,20 μm 間隔で10 × 10 点の100 点に対して 実施した.

3. 実験結果および考察

3.1 乾燥初期における内部構造変化

図1に乾燥過程におけるスラリー内部の OCT 像を示す. この画像はスラリーの断面構 造を示しており, OCT から照射されたレーザー 光の. スラリー内部からの反射光を検出する干 渉計を用いて得られた.画像中の白い領域は光 の干渉が強い領域を示している.入射光は屈折 率の異なる領域の界面で反射するため、画像中 の白い部分はスラリー内部の屈折率差のある領 域に相当する. また, スラリー中の粒子径は入 射光の波長よりも小さいため、反射光から得ら れた OCT 像にはスペックル・パターンが表れ ていた. このスペックル・パターンは内部構造 変化に伴って変化することから、スペックル・ パターンの動きを観察することで、スラリーの 内部構造の変化の度合いを知ることができる. そこで,輝度の変化した部分を動体として検出 する,動体検知法を用いてデータ処理(Kuroda et al., 2023) を行った. 図2に, 乾燥初期にお けるスラリーの OCT 像に動体検知法を施し、 動体として検出された割合を動体検知率として 算出した結果を示す. 溶液系バインダー添加ス ラリーは5~10%であったのに対し、エマル ジョン系バインダー添加スラリーは3%以下で あった.したがって、乾燥初期においては、エ

Fig. 1 OCT image of the internal structure of slurry in the early stage of drying.

マルジョン系バインダーの方がより効果的に内 部構造を固定化したと考えられる.

3.2 乾燥終期における内部構造変化

図3に、乾燥終期におけるスラリー内部の OCT 像を示す.乾燥時間の増加に伴って、ス ラリー内部が暗くなっていた.スラリーに入射 したレーザー光は、界面の屈折率差が大きいほ ど強く散乱されるため、深さ方向の減衰の程度 は大きくなる.シリカ粒子との屈折率差は水よ りも空気が大きいことから、スラリー内部の暗 くなった領域は、空気が入り込んだ領域を示し

Fig. 2 Time variation of motion detection rate of OCT images.

ていると考えられる.溶液系バインダーを添加 したスラリー内部は不均質に暗くなっているの に対して,エマルジョン系バインダーを添加し たスラリー内部は均質に暗くなっていた.溶液 系バインダー添加スラリーは,乾燥初期におけ る粒子集合構造の再配列やバインダーの偏析な どに起因した内部構造変化により,内部構造が 不均質になったために,気液界面の移動,すな わち乾燥が不均質に進んだと考えられる.一方 で,エマルジョン系バインダーはより効果的に 内部構造を固定したために,均質な内部構造が 得られたと考えられる.このように,乾燥初期 における内部構造変化が,乾燥終期における乾 燥挙動にも影響を及ぼすことがわかった.

3.3 スラリー乾燥体の力学特性評価

図4に, ナノインデンテーション法によって 測定したスラリー乾燥体表面近傍における損失 正接の分布を示す. 深さ方向における平均値の 変化に注目すると, 溶液系バインダー添加スラ リー乾燥体は単調に増大していた. これは, 乾 燥初期におけるバインダーの偏析 (Zhang et al., 1993) に起因して内部構造が上下方向に異なっ ていたためだと考えられる. 一方で, エマルジョ

(a) Slurry with a solution-type binder

Fig. 3 OCT images of the internal structure of the slurries in the final stage of drying process.

Fig. 4 Distribution of $\tan \delta$ near the surface of slurry dry body.

ン系バインダーを添加したスラリー乾燥体の損 失正接の平均は深さ方向にほぼ一定であった. これは,乾燥初期におけるバインダーの偏析が ほとんど起こらず,内部構造が上下方向に均質 であったためだと考えられる.また,平面方向 における力学特性の分布の広さを表す標準偏差 の大きさに注目すると,溶液系バインダー添加 スラリーの乾燥体は深さ方向に一定であったの に対し,エマルジョン系バインダー添加スラ リーの乾燥体は,表面付近においては大きいが, 深くなるにつれて小さくなっていた.スラリー 中において,溶液系バインダーは分散媒中に溶 解していたのに対して,エマルジョン系バイン

外部発表成果

口頭・ポスター発表

- Kuroda H., Tatami J., Iijima M., Takahashi T., "Operando observation of the change in the internal structure of the SiO₂ slurry during the drying process by OCT", The XVIIIth Conference of the European Ceramic Society (Lyon, Jul. 2–6, 2023) S12-P261.
- 2. 黒田 啓真, 多々見 純一, 飯島 志行, 高橋

ダーはエマルジョンとして存在していたことを 考慮すると、乾燥体内部においても、溶液系バ インダーよりもエマルジョン系バインダーの方 が平面方向には不均質に分布していたと考えら れる.また、エマルジョン系バインダー添加ス ラリー乾燥体の標準偏差が深さ方向に小さく なったのは、ナノインデンテーションにより得 られる力学特性が、圧入深さまでの情報を含ん でいるために、表面付近ではバインダーの分布 が値のばらつきとして現れていた一方で、より 深い領域まで試料を押し込んだ時は、バイン ダーの分布のばらつきが平均化され、どの領域 も同程度の値をとったためだと考えられる.

このように、スラリー乾燥体表面近傍の力学 特性の分布はスラリーの乾燥挙動に依存して変 化することが明らかとなった.

参考文献

- Kuroda H., Tatami J., Iijima M., Takahashi T., Novel operando observation technique based on combined optical coherence tomography-thermogravimetry for monitoring internal structural changes of drying ceramic slurries, Journal of the Ceramics Society of Japan, 131 (2023) 37–41. http://doi.org/10.2109/jcersj2.23008
- Zhang Y., Tang X.-X., Uchida N., Uematsu K., Mathematical simulation for segregation of PVA during drying, Journal of the Ceramic Society of Japan, 101 (1993) 180– 183. https://doi.org/10.2109/jcersj.101.180

- 拓実, "セラミックススラリーの乾燥に伴う 割れや変形はいかに起こるか~OCT その場 観察が拓く内部構造変化の理解~", 2023 年度 第1回・第2回 粉体操作に伴う諸現象 に関する勉強会(Osaki, Jul. 27–29, 2023) ポ スター7.
- Kuroda H., Tatami J., Iijima M., Takahashi T., "In-situ OCT observation of internal structural evolution during drying of SiO₂ slurry and subsequent sintering in the same field of view", The international Conference on Sintering 2023

(Gifu, Aug. 28-31, 2023) 4B-O04.

- 黒田 啓真, 多々見 純一, 飯島 志行, 高橋 拓実, "セラミックススラリーの乾燥挙動の 解明~メソスケール力学特性評価からのア プローチ~", 2023 年度エンジニアリング セラミックス若手セミナー(Otsu, Sep. 4-5, 2023).
- 5. 黒田 啓真, 多々見 純一, 飯島 志行, 高橋 拓実, "動的ナノインデンテーションによる

シリカスラリー乾燥体表面近傍の粘弾性評価",日本セラミックス協会第36回秋季シンポジウム(Kyoto, Sep. 6-8, 2023)2E25.

 6. 黒田 啓真, 多々見 純一, 飯島 志行, 高橋 拓実, "スラリー乾燥体表面近傍の粘弾性に 及ぼす添加有機物の影響", 粉体工学会 2023 年度秋期研究発表会(Osaka, Oct. 10– 11, 2023) BP-36.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 202-206 /https://doi.org/10.14356/hptf.22507

HPTF22507

生体関連錯体を複合化した粉体光触媒による CO2 還元反応

Development of Hybrid Catalyst Composed of Metal Complex and Semiconductor Photocatalyst for CO₂ Reduction

七條 慶太

援助対象者 Scholarship Student: 七條 慶太 Keita SHICHIJO

九州大学大学院工学府応用化学専攻 博士課程後期 3 年
Graduate School of Engineering, Kyushu University, PhD student (D3)
(現 大阪大学産業科学研究所 助教)
(Currently: Institute of Scientific and Industrial Research, Osaka University, Assistant Professor)
E-mail: k.shichijo@sanken.osaka-u.ac.jp

研究指導者 Academic Leader: **嶌越 恒 Hisashi SHIMAKOSHI** 教授, Professor E-mail: shimakoshi@mail.cstm.kyushu-u.ac.jp

抄 録

持続可能な社会の実現に向けて,天然由来材料を利用した光駆動型の物質変換反応を開発する事は 重要な研究領域である.そこで本研究では,天然由来金属錯体の「ビタミン B₁₂」と可視光応答性 半導体光触媒の「金属イオン修飾酸化チタン」を組み合わせたハイブリッド触媒を開発し,光駆動 型の物質変換反応を実現する事を目指した.具体的には,ハイブリッド触媒への光照射で生じる Co(I)種の反応性を利用した CO₂ 還元反応を検討した.

ABSTRACT

A hybrid catalyst composed of naturally occurring metal complexes and semiconductor photocatalysts enables a variety of molecular transformations in a green and sustainable manner. In this study, we have developed the visible light-driven hybrid catalyst ($B_{12}-M^{n+}/TiO_2$) composed of "vitamin B_{12} " and "metal ion-grafted TiO₂ (M^{n+}/TiO_2)". The $B_{12}-M^{n+}/TiO_2$ was prepared by mixing of B_{12} derivatives and M^{n+}/TiO_2 , and this hybrid catalyst was thoroughly characterized by various measurements. The $B_{12}-M^{n+}/TiO_2$ effectively produced reactive Co(I) species under visible light irradiation. In addition, the reactivity of Co(I) species toward CO₂ reduction was investigated in this study.

成果の概要

1. 諸言

持続可能な社会の実現に向け,持続可能な資源である天然由来材料の有効活用は重要である.その中で,生体由来の金属錯体である「ビタミン B_{12} 」は,注目すべき天然由来材料の一つである(Gruber et al., 2011).ビタミン B_{12} は,中心金属としてコバルトイオン(Co)を有する金属錯体であり,生体内で多様な化学反応を促進する補酵素として働いている(図1).具体的には,メチル基の転移反応や,官能基の異性化反応,更には脱塩素化反応などがビタミン B_{12} の反応性によって促進されている(図1).ビタミン B_{12} の反応性は,中心のコバルトが還元された低原子価錯体のCo(I)種が持つ高い反応性に由来して生じている.この特徴的なCo(I)種の反応性に着目し,現在までに多様な

Fig. 1 (a) Structure of vitamin B₁₂ derivatives, (b) methyl group transfer, (c) 1,2-rearrangement, (d) dehalogenation.

Fig. 2 Estimated mechanism of CO_2 reduction using vitamin B_{12} derivatives.

物質変換反応が報告されている(Wdowik and Gryko, 2022). その中で,ビタミン B_{12} のCo(I) 種を利用した CO₂ 還元法(図 2)の開発は,近 年熱心に研究が展開されている(Jia et al., 2020). 一方,これらの例よりも環境調和性の 高いシステムを実現するためには,持続可能な エネルギー資源である「光」を有効活用して Co(I)種を効率的に生成できるシステムの開発 が必要となる.また,安定で,回収・再利用が 容易であるため,化学工業的に取り扱いやすい 粉体触媒を設計することができれば,さらに優 れたシステムになりうると考えられる.

我々の研究グループでは、現在までに粉体光 触媒の「酸化チタン」と、ビタミン B_{12} から誘 導したコバルト錯体を複合化したハイブリッド 触媒を開発している、また本ハイブリッド触媒 (B_{12} -TiO₂)は、紫外光($\lambda_{max} = 365$ nm)照射下 で、効率よく Co(I)種を生成可能であることを 見出している(Shimakoshi and Hisaeda, 2015). しかしながら、本ハイブリッド触媒は、太陽光 の大部分を占める可視光を利用することができ ない、したがって、可視光に応答することがで きるハイブリッド触媒の開発が望まれている.

そこで本研究では、新たに可視光に応答できる新規ハイブリッド触媒の開発に取り組む.具体的には、可視光応答性を示す半導体光触媒の金属イオン修飾酸化チタン(M^{n+}/TiO_2)とビタミン B_{12} 誘導体を複合化することで、可視光応答性粉体光触媒の $B_{12}-M^{n+}/TiO_2$ ハイブリッド触媒を合成した(図3).また、本ハイブリッド触媒が可視光照射下でCo(I)種を生成できるか調査した、さらに、これらのハイブリッド触

Fig. 3 Visible light-driven hybrid catalyst; B_{12} - $M^{n+/}$ TiO₂.

媒が光触媒的 CO₂ 還元反応へ応用できるか検 討した.

2. 実験手法

2.1 B₁₂-Mⁿ⁺/TiO₂の合成

各種金属イオン (Rh³⁺, Cu²⁺, Ni²⁺, Fe²⁺, Zn²⁺, Mn²⁺, Al³⁺, Mg²⁺) を修飾した酸化チタン (Mⁿ⁺/ TiO₂) を合成した. Mⁿ⁺/TiO₂ とビタミン B₁₂ 誘 導体をメタノール中, 暗所で 24 時間攪拌する ことで, B₁₂-Mⁿ⁺/TiO₂ を合成した. 比較対象と して, 金属イオンを修飾していない B₁₂-TiO₂ も合成した.

2.2 可視光照射下における Co(I) 種生成

5.0 mg の B_{12} -Mⁿ⁺/TiO₂ を犠牲電子源のトリ エチルアミンを含むアセトニトリル中に加えた 懸濁溶液に,窒素下で可視光 ($\lambda \ge 420$ nm)を 照射した.可視光照射中の変化を拡散反射スペ クトルによって追跡することで,Co(I)種生成 の有無を調査した.

3. 結果と考察

3.1 B₁₂-Mⁿ⁺/TiO₂の合成

酸化チタンに各種金属イオン (Rh^{3+} , Cu^{2+} , Ni^{2+} , Fe^{2+} , Zn^{2+} , Mn^{2+} , Al^{3+} , Mg^{2+}) を修飾した M^{n+}/TiO_2 を合成した結果, 粉体触媒の色は白色 から黄色に着色したことが確認された. 合成した M^{n+}/TiO_2 に対して, 粉体試料の光学特性を

Fig. 4 Diffuse reflectance (DR)-UV-vis spectra of $M^{n+/}$ TiO₂.

評価するための分析手法である拡散反射スペク トルを測定した. その結果,全ての M^{n+}/TiO_2 が 400 nm から 650 nm にブロードな可視光吸 収を示すことが確認された(図4).したがって, 合成したすべての M^{n+}/TiO_2 は可視光応答性を 示すことが示唆された.

次に、合成した $M^{n+}/TiO_2 \ge B_{12}$ 誘導体をメ タノール中で撹拌することで、桃色の粉体触媒 である $B_{12}-M^{n+}/TiO_2$ ハイブリッド触媒を得た. ここでは、開発した全てのハイブリッド触媒の 中で、マグネシウムイオン (Mg^{2+}) と B_{12} 誘導 体を共修飾した例を紹介する. $B_{12}-Mg^{2+}/TiO_2$ に対して拡散反射スペクトルを測定した. その 結果、550 nm 付近に B_{12} 誘導体由来のピーク を観測することができた (図 5). これにより、 粉体触媒上に B_{12} 誘導体が修飾されたことを確 認できた. 加えて、 $B_{12}-Mg^{2+}/TiO_2$ のモルフォ ロジー 観察のために SEM 測定を実行した. $B_{12}-Mg^{2+}/TiO_2$ の粒径は、約 50 nm 程度であり、 粒子が凝集することで二次粒子を形成している ことが確認された (図 6). その他、IR 測定や

Fig. 5 DR-UV-vis spectra of TiO_2 (black line), $Mg^{2+/}$ TiO₂ (blue line), and B_{12} -Mg^{2+/}TiO₂ (magenta line).

Fig. 6 SEM images of B_{12} -Mg²⁺/TiO₂.

Fig. 7 DR-UV-vis spectral change of the B_{12} -Mg²⁺/TiO₂ during visible light irradiation in the presence of Et₃N in CH₃CN under N₂: before irradiation, 1 min irradiation, 30 min irradiation of visible light ($\lambda \ge$ 420 nm).

粉末 X 線回折 (XRD) 測定, 蛍光 X 線 (XRF) 測定, TEM 測定によりキャラクタリゼーショ ンを実行し, B₁₂-Mg²⁺/TiO₂の合成に成功した ことを確認した.

3.2 可視光照射下における Co(I) 種生成

開発した B_{12} - Mg^{2+}/TiO_2 が可視光照射下で Co(I) 種を与えるか, 拡散反射スペクトルによっ て調査した. B_{12} - Mg^{2+}/TiO_2 に可視光を 30 分間 照射すると, Co(I) 種に特徴的な 390 nm のピー クを観測することができた(図7). 一方, 比 較で合成した B_{12} - TiO_2 は, 可視光照射下でも Co(I) 種を生成しなかった. そのため, 可視光 応答性を示すためには, Mg^{2+} を修飾すること が必要不可欠であると明らかとした. 以上の実 験結果により, 開発した B_{12} - Mg^{2+}/TiO_2 は, 可 視光を有効に活用して CO₂ 還元反応の触媒活 性種となり得る Co(I) 種を生成できることを見 いだすことができた.

最後に、ハイブリッド触媒に光を照射するこ とで得られた Co(I) 種を用いた CO₂ 還元反応に ついて検討した.ここではまず、 B_{12} -TiO₂を用 いた紫外光駆動型の CO₂ 還元反応を実行した. 10 mg の B_{12} -TiO₂ と電子源のトリエチルアミン を含むメタノール溶液 5 mL に CO₂ をバブリン グしたのち、紫外光を照射した.その結果、目 的とした CO₂ の CO への還元反応(式(1))は 進行せず,プロトン(H⁺)還元による水素発 生(式(2))が GC 分析により観測された.し たがって今後は,本ハイブリッド触媒が CO₂ を選択的に還元できる条件を決定し,最終的に は可視光駆動型の CO₂ 還元を実現させる予定 である.

$\rm CO_2 + 2H^+ + 2e^- \rightarrow \rm CO + H_2O$	(1)
$2H^+ + 2e^- \rightarrow H_2$	(2)

4. 結言

本研究では、天然由来材料の「ビタミン B12」 と可視光応答性光触媒の「Mⁿ⁺/TiO₂」を複合化 することで、機能性粉体光触媒の B₁₂-Mⁿ⁺/TiO₂ ハイブリッド触媒の開発に成功した(Shichijo et al., 2022). 開発されたハイブリッド触媒は, 拡散反射スペクトルやX線測定,顕微鏡観察 によりその物性を詳細に決定することができ た. また、本ハイブリッド触媒は、電子源のト リエチルアミン存在下で 420 nm 以上の可視光 を照射すると、B₁₂誘導体のコバルトイオンが 効率よく還元されることで, 触媒活性種の Co(I)種を与えることが明らかとなった.本結 果は、B₁₂-Mⁿ⁺/TiO₂を可視光駆動型のCO₂還 元反応へ応用可能であることを示唆した. 一方 現状では、本ハイブリッド触媒が CO2 還元反 応よりもプロトン還元反応を優位に促進するこ とが明らかとなっている.したがって今後は, CO, 還元反応を選択的に実行できる条件を決定 したい.

参考文献

- Gruber K., Puffer B., Kräutler B., Vitamin B₁₂-derivatives– enzymecofactors and ligands of proteins and nucleic acids, Chemical Society Reviews, 40 (2011) 4346–4363. https://doi.org/10.1039/c1cs15118e
- Jia C., Ching K., Kumar P.V., Zhao C., Kumar N., Chen X., Das B., Vitamin B₁₂ on graphene for highly efficient CO₂ electroreduction, ACS Applied Materials & Interfaces, 12 (2020) 41288–41293. https://doi.org/10.1021/acsami.0c10125

Shichijo K., Watanabe M., Hisaeda Y., Shimakoshi H., Development of visible light-driven hybrid catalysts composed of earth abundant metal ion modified TiO₂ and B₁₂ complex, Bulletin of the Chemical Society of Japan, 95 (2022) 1016–1024.

https://doi.org/10.1246/bcsj.20220080

Shimakoshi H., Hisaeda Y., Oxygen-controlled catalysis by vitamin B₁₂-TiO₂: formation of esters and amides from

外部発表成果

口頭・ポスター発表

 七條慶太,田中美帆,嶌越恒,"可視光駆 動型ハイブリッド触媒を用いた四ハロゲン 化炭素からの尿素類合成",第47回有機電 子移動化学討論会(Yokohama, Jun. 16–17, 2023) O-10. trichlorinated organic compounds by photoirradiation, Angewandte Chemie International Edition, 54 (2015) 15439–15443. https://doi.org/10.1002/anie.201507782

Wdowik T., Gryko D., C–C bond forming reactions enabled by vitamin B₁₂—opportunities and challenges, ACS Catalysis, 12 (2022) 6517–6531. https://doi.org/10.1021/acscatal.2c01596

https://orgelectrochem.electrochem.jp/Upload_ Files/47th_EOC_poster.pdf

 Shichijo K., Shimakoshi H., "Visible light-driven urea synthesis from CCl₄ promoted by metal complex modified semiconductor hybrid catalyst", 8th Asia-Oceania Conference on Green and Sustainable Chemistry (Auckland, NZ, Nov. 29– Dec. 1, 2023) P3.

https://www.greenchemistry.science.auckland. ac.nz/

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 207-211 /https://doi.org/10.14356/hptf.22508

HPTF22508

複雑形状多孔質セラミックス部材の高速製造法の開発 **Rapid Manufacturing of Complex-Shaped Porous Ceramics Components**

山野井 慶彦

援助対象者 Scholarship Student: 山野井 慶彦 Yoshihiko YAMANOI 横浜国立大学大学院理工学府 博士課程後期2年 Graduate School of Engineering Science, Yokohama National University, PhD student (D2) E-mail: yamanoi-yoshihiko-sn@ynu.jp

研究指導者 Academic Leader:

飯島 志行 Motoyuki IIJIMA

准教授, Associate Professor E-mail: iijima@ynu.ac.jp

抄 録

本研究では、高気孔率多孔質シリカ部材の高速製造プロセスの構築に向けて、ナノ粒子を用いた粒 子間光架橋性ピッカリングエマルションスラリーを設計した.本スラリーへの光照射により鋳型形 状を転写した光硬化体が得られた.また.1000°Cでの脱脂・焼成操作により.成形体中の多孔質 構造を維持したまま粒子間にネックを形成させることで、従来法と比較して高い気孔率を有する複 雑形状多孔質シリカ部材の高速製造に成功した.

ABSTRACT

For the fabrication of complex-shaped porous SiO₂ components with higher porosity, an interparticle photocross-linkable w/o Pickering emulsion suspension with low particle concentration was designed using nanoparticles. The designed suspension was photocured in a silicone mold with a complex structure. By firing the green compacts at 1000°C, a slight neck growth between the raw SiO₂ nanoparticles progressed while maintaining the pore structure generated by the dispersed aqueous phase. In addition, the complex-structured porous SiO₂ parts with higher porosity compared to conventional systems using submicron particles were successfully obtained by rapid heating process without occurring any structural collapse.

成果の概要

1. 緒言

光硬化性スラリーを用いたセラミックスの三 次元造形技術は、任意形状部材を生産性良く成 形できる期待から高く着目されている. 多孔質 セラミックスの造形でもこれまでに、原料微粒 子の界面吸着により安定化されたエマルション (ピッカリングエマルション)を含むスラリー を造形する手法(Kleger et al., 2021)等が報告 されてきた.しかし、いずれの手法も、多量に 添加された樹脂分の燃焼に伴う割れや変形を防 ぐために,低速で長時間の脱脂・焼成操作が強 いられていた.この課題を解決するため、我々 はこれまでに、ポリエチレンイミン (PEI) と オレイン酸 (OA) の会合体 (PEI-OA) で分散 安定化した SiO₇/ トルエンスラリーにごく少量 の多官能アクリレート(MA)と光重合開始剤 を加えたのち、水を配合して乳化混合すること で光硬化性 w/o 型ピッカリングエマルションス ラリーを設計してきた (Yamanoi et al., 2022; 2023). これは、PEI-OAのOA比率によって 簡便に粒子表面 / 溶媒間の親和性制御すること でピッカリングエマルションを安定化可能な 点、わずかな樹脂分でも粒子間に架橋形成する ことで確実に光硬化できる点に特徴がある.本 スラリーへの位置選択的な光照射により、水相 を鋳型とした多孔質構造をもつ光硬化体が得ら れかつ, 従来手法と比較して高速で短時間の加 熱操作により脱脂・粒子間ネック形成ができる ことを実証してきたが、得られる多孔質 SiO, 部材の気孔率(75%)に改善の余地が残った. そこで本研究では、「低い体積分率でも架橋形 成に必要な小さな粒子表面間距離が得られる」 ナノ粒子の幾何学的特性を活用し, SiO₂ナノ 粒子を原料とした粒子間光架橋性ピッカリング エマルションを設計することで低密度な光硬化 体を作製し、高気孔率多孔質シリカ部材を高速 製造するプロセスを構築することを目的とし た.

2. 実験方法

既報(Yamanoi et al., 2022) に基づき PEI (Mw1800)の全EIユニットに対し15 mol%の OAを会合した PEI-OAをトルエン中で調製し, PEI-OAを所定量(0-2.0 mg/m²)溶解したトル エンに SiO₂粒子(Evonik, OX50, BET 径 40 nm, 5 wt%)を加え分散した.この分散液を遠心分 離して得られた上澄み溶液の導電率変化から, トルエン中における SiO₂粒子表面に対する PEI-OAの吸着挙動を評価することで, PEI-OA 会合体の最適添加量を見積もった.

さらに、PEI-OAを飽和吸着量相当量分 (1.2 mg/m²) 混合した分散液(粒子濃度 20 vol%) に、多官能アクリレート(MA、対溶 媒 9.3 vol%) と光ラジカル重合開始剤を溶解し たのちにイオン交換水を添加し(体積比:水/ トルエン = 50/50), 薄膜旋回型高速ミキサー (フィルミクス 30-L, プライミクス) により混 合処理(7400 rpm, 60 s 処理)を施すことで光 硬化性ピッカリングエマルションスラリーを調 製した、得られたスラリーをテフロン製モール ド(\$20 mm)に注型し,紫外光照射(波長 365 nm, 60 s) により硬化させた. また, 得ら れた硬化体には乾燥(室温,24h),脱脂・焼 成処理(10°C/min, 800, 1000°C, 30 min 保持) を施した.スラリーの光硬化性を光照射前後に おける貯蔵弾性率変化により評価した. 焼成体 の内部微構造を焼成体破断面の SEM, FE-SEM 観察により評価した.

3. 実験結果および考察

図1には、スラリーから回収した上澄み溶液 の導電率変化から見積もった、SiO₂粒子に対 する PEI-OA の添加量と吸着量の関係を示す. 1.2 mg/m²の添加量までは添加したほぼ全ての PEI-OA がトルエン中で効果的に SiO₂粒子上 に吸着していることが明らかになった.一方、 PEI-OA の添加量をそれ以上増やしても吸着量 の増加は認められず、1.2 mg/m²の添加条件で 飽和吸着状態にあることが確認された. 図2には、粒子間光架橋性ピッカリングエマ ルションスラリーの光照射前後における貯蔵弾 性率を示す.既報(Yamanoi et al., 2022)と比 較して粒子濃度が低い条件でも、光照射直後に スラリーの貯蔵弾性率は増大しており、光硬化 性を有していることが確認された.

図 3(a) には、ピッカリングエマルション化 した光硬化性スラリーから得た光硬化体(乾燥 体)と各温度で焼成した焼成体の外観の様子を 示す.紫外光照射によりスラリーは硬化し、鋳 型形状を反映したハンドリング可能な成形体が 得られた.この成形体は高速な脱脂・焼成操作 (10°C/min)を経たのにも関わらず、その外形

Fig. 1 Relation between additive and adsorbed content of PEI-OA on SiO₂ particles.

Fig. 2 Change in G' after photo irradiation of interparticle photo-cross-linkable Pickering emulsion.

構造を崩壊させることなく焼成できることが明 らかとなった.

図 3(b)には、本スラリーから得られた光硬 化体を各温度で脱脂・焼成する前後の多孔体の 線収縮率と気孔率を示す.800°Cでの熱処理後 には、硬化体の収縮はほとんど見られなかった 一方で、成形体中の有機分(PEI-OA や MA) が除去され気孔率が上昇した(84%).1000°C での焼成後には、気孔率を維持したまま、収縮 率が増大し始める様子が観察された.

図4には、1000°Cで焼成した焼成体について、 破断面の観察結果を示す.内部を観察してみる と、水相を鋳型とした多孔質構造を有している ことが明らかとなった(図4(a)).さらに、壁 部を詳細に観察してみると、粒子間でわずかな ネック形成が進行していることも確認された (図4(b)).以上のことから、本スラリーから得 られる成形体は、1000°Cでの脱脂・焼成操作 を施すことで、高い気孔率(84%)を維持した まま粒子間にネック形成することで強度を向上 させることができることが明らかとなった.

図5には、上記の光硬化性ピッカリングエマ ルションスラリーを用いて、その場光硬化法に より得た複雑形状体を焼成した様子を示す.複 雑な外形を付与した光硬化体についても、高速

Fig. 3 (a) Appearance, (b) linear shrinkage and porosity of the green body and sintered bodies.

Fig. 4 (a) SEM image and (b) FE-SEM image of the fractured surface of the sintered body treated at 1000°C.

Fig. 5 Complex-structured SiO₂ porous body through silicone molding (a) before and (b) after heat treatment at 1000°C.

な脱脂焼成(10°C/min, 1000°C) 条件下で構造 体の崩壊を抑制できることが明らかになった.

4. 結言

PEI-OA 会合体を吸着した SiO₂ ナノ粒子を 用いて粒子間光架橋性ピッカリングエマルショ ンを設計した.本スラリーから得られる光硬化 体は,高速な脱脂・焼成プロファイルでも割れ や変形を起こすことなく脱脂・粒子間ネック成 長できることが明らかとなった.焼成温度を制 御することで,既報より高い気孔率(84%)を 有する複雑形状多孔質 SiO₂ 部材の高速製造に 成功した.

参考文献

Kleger N., Minas C., Bosshard P., Mattich I., Masania K., Studart A.R., Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions, Scientific Reports, 11 (2021) 22316.

https://doi.org/10.1038/s41598-021-01720-6

- Yamanoi Y., Tatami J., Iijima M., Interparticle photocross-linkable Pickering emulsions for rapid manufacturing of complex-structured porous ceramic materials, Advanced Powder Technology, 33 (2022) 103638. https://doi.org/10.1016/j.apt.2022.103638
- Yamanoi Y., Tatami J., Iijima M., Effects of SiO₂ particle surface design on the photocuring properties of interparticle photo-cross-linkable Pickering emulsions, Advanced Powder Technology, 34 (2023) 104240. https://doi.org/10.1016/j.apt.2023.104240

外部発表成果

口頭・ポスター発表

 Yamanoi Y., Tatami J., Iijima M., "Shaping porous ceramics using interparticle photocross-linkable w/o Pickering emulsions: the impacts of particle surface design", The 18th Conference of the European Ceramic Society (Lyon, France, Jul. 2-6, 2023) S1-P013.

- Yamanoi Y., Tatami J., Iijima M., "Fabrication of transparent SiO₂ glass components by DLP-type 3D printing system using interparticle photocross-linkable suspensions", The international conference on Sintering 2023 (Nagaragawa, Japan, Aug. 27–31, 2023) 1P-05.
- 3. 山野井 慶彦, 多々見 純一, 飯島 志行, "粒

研

子間光架橋性スラリーを用いた積層光造形 と複雑形状シリカ部材の高速焼成",第60 回粉体に関する討論会(Tokyo, Sep. 8–10, 2023) 1–2.

4. 山野井 慶彦, 多々見 純一, 飯島 志行, "粒

子間光架橋性スラリーを用いた複雑形状多 孔質シリカ部材の 3D 積層光造形",日本セ ラミックス協会 2024 年年会(Kumamoto, Mar. 14–16, 2024) 3K21.

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 212-216 /https://doi.org/10.14356/hptf.22509

HPTF22509

粒子内部の相互接続ナノポアを駆使した環境触媒の開発 Development of Environmental Catalysts Particles by Utilizing

Interconnected Nanoporous Structures

Phong Hoai LE

援助対象者 Scholarship Student: Phong Hoai LE

広島大学大学院先進理工系科学研究科 博士課程後期 2 年 Graduate School of Advanced Science and Engineering, Hiroshima University, PhD student (D2) E-mail: lehoaiphong@hiroshima-u.ac.jp

研究指導者 Academic Leader:

荻 崇 Takashi OGI

教授, Professor E-mail: ogit@hiroshima-u.ac.jp

抄 録

微粒子の多孔質構造化は,環境触媒の開発においても重要である.本研究では,マクロポーラス構造を持つ三元触媒(ポーラスTWC)粒子の合成を検討した.ポーラスTWC粒子は,TWCナノ粒子と造孔材粒子を噴霧乾燥することで合成した.ポーラスTWC粒子と造孔材を用いずに合成した TWC凝集体粒子のCO酸化性能を評価した結果,ポーラスTWC粒子はTWC凝集体粒子の構造と比較して,COの酸化効率が50%向上した.これは,微粒子内に連通孔を有した多孔質構造により,粒子内部の対流拡散が促進されたためだと考えられる.この研究成果は,環境触媒の機能向上のための重要な知見となると考えている.

ABSTRACT

Porous structures are increasingly getting attentions in developing environmental catalysts, such as three-way catalysts (TWC), due to their ability to improve catalyst performance without changing their composition. This study explored various template-to-TWC mass ratios to create an optimal interconnected nanoporous structure while maintaining the catalyst morphology. This optimized sample was then investigated to compare CO oxidation performance with nanoparticles and aggregate structures. The results demonstrated that the nanoporous structure improved CO oxidation efficiency by 50% compared with other structures. This improvement is attributed to the better diffusion of reactants within the interconnected porous structures of the nanoporous sample. These findings highlight the critical role of nanoporous structures in enhancing the effectiveness of environmental catalysts.
成果の概要

1. Introduction

Vehicle pollution, including CO, NO_x , hydrocarbons, and particulate matter, has been a major concern for decades due to its harmful effects on health and the environment (Kojima et al., 2016). To reduce these emissions, researchers have focused on improving vehicle exhaust treatment technologies, particularly the three-way catalyst (TWC), which has been equipped since the 1970s (Reşitoğlu et al., 2015). Although effective, TWC technology relies on expensive metals like Rh, Pd, or Pt, leading to costly production. With the rise of gasoline direct injection vehicles, there's a growing need to make TWCs more efficient.

A promising approach is to enhance TWCs by incorporating nanoporous structures into the catalyst particles. These structures improve the reaction diffusion process, thus boosting the catalyst's performance. This study developed optimized nanoporous TWC particles using a template-assisted spray process with 154 nm polystyrene latex (PSL) as the template. Different concentrations of TWC nanoparticles and polystyrene latex particles were investigated to create an optimized interconnected nanoporous structure. The final product's effectiveness was then tested for CO oxidation, demonstrating the benefits of the nanoporous structure in enhancing catalytic performance.

2. Materials and methods

Fig. 1 describes the experimental procedure for synthesizing nanoporous TWC particles using PSL as a template. Briefly, the precursor solutions contained 0.5 wt% TWC NPs and various concentrations of PSL to achieve PSL/TWC mass ratios of 0.5, 1.0, and 3.0. These precursors were then fed into the spray pyrolysis system (Fig. 1a). The asprepared samples were subsequently reheated at 900°C for 4 h to completely remove any PSL residue (Fig. 1b). The resulting nanoporous TWC particles were denoted as NTP-X, with X illustrated the PSL/ TWC mass ratio. For comparison, the aggregate structured TWC particles (ATP) without using PSL template were synthesized with identical method but with concentration of TWC NPs of 2.0 wt%, ensuring that the final particles had diameters comparable to the nanoporous ones. These particles were then evaluated in the catalytic assessment system (Fig. 1c) for their CO oxidation performance. The detailed methodology and additional information for the cat-

Fig. 1 Experimental setups for the (a) spraying, (b) reheating, and (c) catalytic evaluation.

alytic performance evaluation have been published in previous studies (Le, Kitamoto, et al., 2023; Le, Yamashita, et al., 2023). In brief, 0.015 g of catalyst was placed in the quartz tube (3.8 mm inner diameter) and fixed by two quartz wool layers. The catalyst underwent pretreatments at 200°C for 30 min, which involved two steps: first with a H₂ 5.0 vol%/N₂ and then with a CO 0.8 vol%/O₂ 0.8 vol%/N₂, each at flow rate of 100 mL/min. For the measurement, a gas mixture of CO 0.8 vol%/O₂ 0.8 vol%/N₂ was introduced through the catalyst at flow rate of 100 mL min⁻¹, while the temperature was raised from 50 to 200°C. The gas outlet was analyzed online by gas chromatography (GC-14B, Shimadzu, Japan). The CO conversion (C_{CO} [%]) was calculated using Eq. 1

$$C_{\rm CO} = ([{\rm CO}]_{\rm in} - [{\rm CO}]_{\rm out})/[{\rm CO}]_{\rm in} \times 100\%$$
 (1)

where $[CO]_{in}$ and $[CO]_{out}$ are the concentrations of CO at the inlet and outlet of catalyst bed measured by GC, respectively.

The CO conversation rate ($R_{\rm CO}$ [mL min⁻¹ g_{cat}⁻¹]) at 130°C was calculated from Eq. 2 considering the $C_{\rm CO}$ at 130°C [%], the catalyst weight ($m_{\rm cat}$) [g].

$$R_{\rm CO} = C_{\rm CO} \times 0.8\% \times 100 / m_{\rm cat} \tag{2}$$

3. Results and discussion

Fig. 2 shows the morphologies of aggregate and nanoporous TWC particles prepared via a template-assisted spray process, followed by a reheating process. This reheating process, optimized at 900°C for 4 h, effectively removed the PSL residues from the nanoporous TWC particles (Le, Yamashita, et al., 2023). Initially, spherical aggregate TWC particles were obtained (**Fig. 2(a-1**)) because of the spherical droplet generation in the spray process. The internal aggregate structures were also confirmed from samples prepared without PSL template, as shown in **Fig. 2(a-2)**. Furthermore, **Fig. 2(b-1**) reveals the spherical morphology of nanoporous particles achieved by introducing the PSL as a template into

Fig. 2 (Left) SEM and (right) TEM images of aggregate and nanoporous TWC particles prepared at different PSL/TWC mass ratios: (a) 0 (ATP), (b) 0.5 (NTP-0.5), (c) 1.0 (NTP-1.0), and (d) 3.0 (NTP-3.0).

the precursor solution. On the other hand, the uniform distribution of nanopores is highlighted in the TEM images in **Fig. 2(b-2)**. Increasing the PSL/ TWC mass ratio from 0.5 to 1.0 results in the increased number of nanopores (**Fig. 2(c-1**)) while retaining the spherical morphology. The higher number of nanopores within the particles was also confirmed by the highly porous TEM images in **Fig. 2(c-2**). However, further increasing the PSL/TWC mass ratio into 3.0 can lead to the disintegration of nanoporous particles (**Fig. 2(d-1**) and (**d-2**)).

To examine the interior structures of the nanoporous TWC particles, cross-sectional SEM analysis was performed. The aggregate structure of **ATP** was observed in the cross-sectional SEM images (**Fig. 3a**). The nanopores were homogeneously

distributed, not only on the surface but also internally, as shown in **Fig. 3b**. Increasing the PSL/TWC mass ratio to 1.0 results in the formation of interconnected nanoporous structures (**Fig. 3c**). Higher PSL concentrations mean more nanopores within the particles, enhancing the connection between the nanopores inside the final particles (Le, Cao, et al., 2023; Le et al., 2022). Thus, increasing the PSL/ TWC mass ratio to 1.0 leads to TWC particles with greater porosity and interconnected nanoporous structure, improving the diffusion efficiency and catalytic performance.

To evaluate the catalytic performance of various TWC structures, CO oxidation was used as model reaction. **Fig. 4a** demonstrates that the nanoporous TWC particles (**NTP-1.0**) exhibit the highest CO oxidation performance among the investigated samples. This result is attributed to the high diffusion efficiency of reactants through the large pores of the nanoporous structures. Specifically, the CO conversion rate at 130°C can increase 50% from 34.5 to 51.8 mL min⁻¹ g_{cat}^{-1} by introducing the nanoporous

Fig. 3 (Left) High magnification and (right) crosssectional SEM images of (a) ATP, (b) NTP-0.5, and (c) NTP-1.0.

structures into the aggregate structure (**Fig. 4b**). In contrast, the TWC NPs and aggregate TWC particles (**ATP**) show the similar and lower catalytic performance because of limited diffusion within their structures (**Fig. 4a**). Consequently, their CO conversion rates are similar around 34.5–35.5 mL min⁻¹ g_{cat}^{-1} at 130°C. This similarity in catalytic performance is attributed to the arrangement of TWC NPs within the catalyst bed, which restricts the diffusion of reactants, reducing the performance of **TWC NPs** samples.

4. Conclusion

This study reported the method for synthesizing interconnected nanoporous structures in environmental catalyst for enhancing their performance. By

Fig. 4 (a) CO oxidation performances and (b) CO conversion rate at 130°C of TWC NPs, ATP, and NTP-1.0 samples.

controlling the mass ratio of template to catalyst, the interconnected nanoporous structures were able to achieve while maintaining the particle's spherical shape. Incorporating a nanoporous structure into the particles significantly enhances their catalytic performance. This enhancement is primarily due to the increased diffusion of reactants within the interconnected pores. Our findings hold promise for advancing the development of environmental catalysts, potentially leading to more environmentally friendly solutions for future generations.

参考文献

- Kojima N., Tokai A., Nakakubo T., Nagata Y., Policy evaluation of vehicle exhaust standards in Japan from 1995 to 2005 based on two human health risk indices for air pollution and global warming, Environment Systems and Decisions, 36 (2016) 229-238. https://doi.org/10.1007/s10669-015-9582-1
- Le P.H., Cao K.L.A., Kitamoto Y., Hirano T., Ogi T., Designing the macroporous structure of three-way catalyst particles: the influence of template concentration on framework thickness and mass transfer, Langmuir, 39

外部発表成果

論文発表

- 1. Le P.H., Cao K.L.A., Kitamoto Y., Hirano T., Ogi T., Designing the macroporous structure of threeway catalyst particles: the influence of template concentration on framework thickness and mass transfer, Langmuir, 39 (2023) 7783-7792. https://doi.org/10.1021/acs.langmuir.3c00621
- 2. Le P.H., Yamashita S., Cao K.L.A., Hirano T., Tsunoji N., Kautsar D.B., Ogi T., CO oxidation enabled by three-way catalysts comprising Pd/Rh nanoparticles supported on Al₂O₃ and CeZrO₄ confined in macroporous polystyrene latex templates, ACS Applied Nano Materials, 6 (2023) 17324-17335.

(2023) 7783-7792.

https://doi.org/10.1021/acs.langmuir.3c00621

Le P.H., Kitamoto Y., Cao K.L.A., Hirano T., Tanabe E., Ogi T., Synthesis of macroporous three-way catalysts via template-assisted spray process for enhancing mass transfer in gas adsorption, Advanced Powder Technology, 33 (2022) 103581.

https://doi.org/10.1016/j.apt.2022.103581

- Le P.H., Kitamoto Y., Yamashita S., Cao K.L.A., Hirano T., Amen T.W.M., Tsunoji N., Ogi T., Macropore-size engineering toward enhancing the catalytic performance of CO oxidation over three-way catalyst particles, ACS Applied Materials & Interfaces, 15 (2023) 54073-54084. https://doi.org/10.1021/acsami.3c11489
- Le P.H., Yamashita S., Cao K.L.A., Hirano T., Tsunoji N., Kautsar D.B., Ogi T., CO oxidation enabled by threeway catalysts comprising Pd/Rh nanoparticles supported on Al2O3 and CeZrO4 confined in macroporous polystyrene latex templates, ACS Applied Nano Materials, 6 (2023) 17324-17335. https://doi.org/10.1021/acsanm.3c03954

Reșitoğlu İ.A., Altinișik K., Keskin A., The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technologies and Environmental Policy, 17 (2015) 15-27.

https://doi.org/10.1007/s10098-014-0793-9

https://doi.org/10.1021/acsanm.3c03954

3. Le P.H., Kitamoto Y., Yamashita S., Cao K.L.A., Hirano T., Amen T.W.M., Tsunoji N., Ogi T., Macropore-size engineering toward enhancing the catalytic performance of CO oxidation over three-way catalyst particles, ACS Applied Materials & Interfaces, 15 (2023) 54073-54084. https://doi.org/10.1021/acsami.3c11489

口頭・ポスター発表

1. Le P.H., Ogi T., "Engineering macroporous structure towards enhancing mass transfer and catalytic performance of three-way catalyst particles", Oral presentation, 2023 MRS Fall Meeting & Exhibit (Boston, USA, Nov. 26th-Dec. 1st, 2023).

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 217-222 /https://doi.org/10.14356/hptf.22510

HPTF22510

気中でのコアシェル型金属微粒子の精密合成と特性評価

Precise Synthesis and Characterization of Core–Shell Metal Particles in Gas Phase

援助対象者 Scholarship Student: Eka Lutfi SEPTIANI

Eka Lutfi SEPTIANI

広島大学大学院先進理工系科学研究科 博士課程後期 3 年 Graduate School of Advanced Science and Engineering, Hiroshima University, PhD student (D3) E-mail: eka-septiani@hiroshima-u.ac.jp

研究指導者 Academic Leader:

荻 崇 Takashi OGI

教授, Professor E-mail: ogit@hiroshima-u.ac.jp

抄 録

デジタル技術は、世界の持続可能な開発目標(SDGs)に不可欠である.これらの機器や機械には、 高性能の粉末磁性コア・インダクタが必要である.本研究では、サブミクロンサイズのシリカ被覆 FeNi (FeNi@SiO₂)粒子を組み込むことで、この部品の磁気特性を向上させることに成功した. FeNi@SiO₂粒子の効率的な一段階合成を達成するために、スワラー支援噴霧熱分解法を用いた.高 いコーティング品質を持つ粒子を得るために、FeNi エアロゾルと HMDSO 蒸気を分散させる旋回 流を供給するための追加ガス流量(Q_a)の効果を調べた.最適な Q_a は、直径 353 nm、シェル厚さ 25 nm、高コーティング率(96%)、低い SiO₂ナノ粒子不純物の FeNi@SiO₂粒子をもたらした.

ABSTRACT

Digital and electrical technologies are vital to achieve global sustainable development goals (SDGs). These devices and machines require high-performance powder magnetic core inductors. This study successfully enhanced the magnetic characteristics of this component by incorporating submicron-sized silica-coated FeNi (FeNi@SiO₂) particles. The Swirler-assisted spray pyrolysis method was used to achieve an efficient one-step synthesis of FeNi@SiO₂ particles. To obtain particles with high-quality coating, the effect of an additional gas flow rate (Q_a) for providing swirling flow to disperse FeNi aerosol and HMDSO vapor was investigated. The optimum Q_a resulted in FeNi@SiO₂ particles with 353 nm diameter, 25 nm shell thickness, a high coating ratio (96%), and low free SiO₂ nanoparticle impurity.

成果の概要

1. Background

Powder cores, comprising iron powder and its alloys, have been pivotal in miniaturizing power electronics and advancing electric machines. The growing demand for electrical machines in global industries and transportation underscores the need for improved soft magnetic materials to enhance wide bandgap semiconductor devices. FeNi particles offer a high DC bias current (Septiani et al, 2022a), but the issue of eddy current losses remains challenging. Coating FeNi particles with silica can mitigate eddy current losses. Our group recently achieved the production of spherical submicron-sized FeNi particles in a single benign step using the spray pyrolysis method (Septiani et al, 2021). Consequently, the gasphase aerosol process for silica coating is highly desirable for further material development. Several studies have attempted aerosol-based silica coating (Teleki, 2009), but the process could not be used to reduce metal salt to metal because of the oxygen content. To date, no research has investigated the one-step aerosol-based synthesis of silica-coated FeNi particles. The combination of FeNi reduction and coating in a single step poses a complex challenge, making spray pyrolysis an attractive option owing to its ability to maintain the reduction atmosphere and cost-effectiveness compared with other methods.

In practical applications, achieving uniform and homogeneous coating is crucial for enhancing the characteristics of silica-coated FeNi particles in powder cores. In this work, fluid flow control for obtaining FeNi@SiO₂ particles was investigated. The FeNi precursor was transported by a 5%H₂–Ar carrier gas (Q_c), while hexamethyldisiloxane (HMDSO) as a silica source was delivered by a 5%H₂–Ar gas from silica carrier gas (Q_s) and additional gas (Q_a). Q_s controlled the amount of silica source, and Q_a influenced its distribution inside the reactor. The flow rate of Q_a was tuned to enhance the coating quality in the most effective connector type.

2. Experimental section

Fig. 1 shows a schematic of the synthesis of FeNi@SiO₂ particles through swirler connectorassisted spray pyrolysis. This system comprises a preheater, swirler connector, and spray pyrolysis reactor, as stated in our previous study (Septiani et al, 2022b). First, 5 L/min carrier gas of 5%H2-Ar conveyed FeNi precursor droplets into a Pyrex glass pre-heater, with a length of 395 mm and a diameter of 36 mm, resulting in intermediate solid particles. Then, the solid particles met HMDSO-laden 5%H₂-Ar gasses through the connector. Hence, the FeNi precursor and HMDSO were mixed and entered the spray pyrolysis reactor with a 1300 mm tube length and 30 mm internal diameter. The pre-heater temperature was 300°C, connector temperature was 150°C, and the five enclosed furnaces with adjustable reactor temperature were at 1400°C. In the bubbler, HMDSO was held at 2°C. HMDSO vapor from the bubbler was carried by 5% H₂-Ar (Q_s). An additional carrier gas flow rate (Q_{a}) was managed to maintain FeNi-HMDSO aerosol mixing.

The characterization of FeNi@SiO₂ particle morphology was examined by FE-SEM (S-5200, 20 kV, Hitachi High-Tech. Corp., Tokyo, Japan) and TEM (JEEM-2010, 200 kV, JEOL Ltd., Tokyo, Japan). The crystal structure was confirmed by XRD analysis (D2 PHASER, Bruker Corp., Billerica, MA, USA). High-angle annular dark-field scanning TEM

HMDSO (SiO₂ source)

Fig. 1 Schematic diagram of the process for producing FeNi@SiO₂ particles through swirler connectorassisted spray pyrolysis.

(HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping of elemental Fe, Ni, Si, and O were used to obtain a cross-sectional picture of the FeNi@SiO₂ particles. FeNi@SiO₂ particles were mixed with micron-sized Fe–Si–B particles to form a powder core at a 1:4 ratio. All powder core specimens in wire wounded toroidal were tested for DC bias performance using a Precision LCR Meter 4284A (Keysight Technologies, Inc.) with a maximum applied field of 20 A and a maximum magnetic field of 320 Oe. The phase difference between the exciting current and the induced electromotive force was used to compute the eddy current loss.

3. Results

Fig. 2 presents the morphology and structure of

Fig. 2 Morphology and structure of the synthesized FeNi@SiO₂ particles prepared by different additional gas flow rates (Q_a): (**a**–**d**) 1, 3, 5, 7 L/min, respectively. 1: SEM, 2: TEM images.

the produced FeNi@SiO₂ particles by using various additional gas flow rates (Q_a) . According to the SEM images in Fig. 2 (a-1) to (d-1), the spherical shape and submicron size were confirmed in all cases. In the present study, it was observed that FeNi@SiO₂ particles exhibiting a rough surface morphology were synthesized under the conditions of the lowest and highest volumetric flow rates, specifically at 1 and 7 L/min. Conversely, particles with a smooth surface morphology were formed within the flow rate range of 3 to 5 L/min. The roughness observed on the surface of the particles may be attributed to the existence of free silica nanoparticles within the generated particles. The generation of free silica occurs because of the HMDSO vapor, which is insufficient to deposit on the surface of the core particles.

Furthermore, to confirm the particle structure, TEM images are shown in **Fig. 2** (a-2) to (d-2). At a Q_a of 1 L/min, it was clearly seen that the FeNi particles were partially coated by SiO₂. Moreover, a significant quantity of nanoparticles indicating free silica was observed. In contrast, in the higher Q_a cases, FeNi particles with a perfect coating were obtained. Thereby, further discussion is focused on Q_a ranging from 3 to 7 L/min.

By measuring approximately 400 particles shown in the TEM images, the coating ratio (CR), average particle diameter $(d_{av,g})$, and shell thickness (t_s) were examined. It was found that the CR was counted at 95%, 96%, 93% for Q_a of 3, 5, 7 L/min, respectively. Remarkably, an inverse relationship was observed between CR and the generation of silica nanoparticles. In addition, a subtle distinction was noted in the geometric mean diameter of the particles and the geometric standard deviation $(d_{av,g}/\sigma_{d,g})$, which measured 361 nm/1.54, 353 nm/1.49, and 350 nm/1.60 as Q_a increased from 3 to 7 L/min. The Q_a variation at 3, 5, and 7 L/min resulted in shell thicknesses of 27, 25, and 22 nm, respectively. The shell thickness was also considered to proportionally affect the diameter of the FeNi@SiO₂ particles.

The mechanism governing the formation of FeNi@SiO₂ particles is shown in **Fig. 3**.

Typically, the FeNi precursor undergoes decomposition and reduction, transforming into solid metal particles (FeNi aerosol), while the HMDSO vapor undergoes a reaction to yield silica monomers (SiO₂ aerosol). Subsequently, these silica monomers nucleate either on the surface of the metal solid particle (heterogeneous nucleation) or within the surrounding fluid (homogeneous nucleation).

In cases with lower Q_a values, the distribution of HMDSO tends to be non-uniform, resulting in a region with a higher concentration of generated silica monomers. This high concentration of silica monomers brings them into close proximity to FeNi aerosols, thereby facilitating heterogeneous nucleation. However, it also promotes the conversion of gas to solid, giving rise to free SiO₂ nanoparticles and consequently leading to the formation of particles with a relatively high content of free SiO₂ nanoparticles and thicker shell layers. In contrast, a significant increase in Q_a likely results in a lower concentration of HMDSO within the gas flow, creating more space between the generated SiO₂ and FeNi aerosols. In addition, the elevated flow rate reduces the residence

> Inhomogeneous SiO₂ concentration

Low Q

High Q_a

time, limiting interactions between the generated SiO_2 and FeNi aerosols. Consequently, the remaining generated SiO_2 manifests as nanoparticles. Based on this observation, the optimal conditions for producing FeNi@SiO₂ particles are achieved when employing a Q_a of 5 L/min.

The crystal structure analysis of FeNi@SiO₂ particles using a Q_a of 5 L/min also confirmed the successful synthesis of FeNi as the particle core. The XRD pattern in **Fig. 4** (a) revealed an FeNi crystal structure without oxidized iron or nickel peaks, indicating the completeness of the reduction process. To provide additional support for the characterization of the synthesized particles, cross-sectional HAADF-STEM analysis was used. The picture depicted in **Fig. 4** (b) exhibits distinct core–shell FeNi@SiO₂ particles, as evidenced by the lack of composite FeNi/SiO₂ structures. The particle cross-section was subjected to elemental mapping using EDS analysis,

Fig. 3 Schematic of the effect of Q_a on FeNi@SiO₂ particle formation.

decreases FeNi and

SiO₂ contact

Fig. 4 (a) XRD pattern, (b) HAADF-STEM image, and elemental mapping of FeNi@SiO₂ particles synthesized using a Q_a of 5 L/min.

22.

Too fa

which clearly revealed the presence of the FeNi core and SiO_2 shell, with no evidence of oxidation. In accordance with the TEM image in **Fig. 2**, this figure displays FeNi@SiO₂ particles with a few uncoated particles.

Subsequently, the magnetic properties of this powder magnetic core were evaluated and compared with those of a specimen incorporating FeNi particles. First, DC bias characteristics, represented by the $I_{\rm sat}$ value, were determined by 30% deteriorating value of the relative permeability of the powder core. Notably, the use of FeNi@SiO2 particles demonstrated the ability to maintain relative permeability degradation at higher DC bias currents compared with FeNi particles. Specifically, the I_{sat} value achieved with FeNi@SiO₂ particles was 17.0 A, whereas the uncoated FeNi counterpart yielded a value of 14.3 A. Second, the eddy current loss was measured. Comparing the application of FeNi@SiO2 and FeNi particles in the powder core, the FeNi@SiO₂ particles resulted in a 30% lower eddy current loss at the same packing density. These results indicate that the FeNi@SiO₂ particles were substantially more effective than the FeNi particles as secondary particles in a powder magnetic core.

4. Conclusion

Investigation of the production of FeNi@SiO₂ particles and their incorporation into a powder magnetic core has resulted in remarkable results. The connector-assisted spray pyrolysis approach was effectively employed to achieve the one-step synthesis of FeNi@SiO₂ particles. The investigation involved altering the additional gas flow rates (Q_a) at 1, 3, 5, and 7 L/min to examine their effects. The lowest Q_a resulted in the production of an inhomogeneous

coating. Meanwhile, the increase in Q_a from 3 to 5 L/min yielded a more homogeneous dispersion of hexamethyldisiloxane (HMDSO) vapor, resulting in a high coating quality. However, when the Q_a was increased to 7 L/min, the coating quality decreased because of inadequate residence time and insufficient distance between the FeNi aerosol and the produced SiO₂. The use of FeNi@SiO₂ particles as secondary particles demonstrated a significant advantage in terms of DC bias characteristics and eddy current loss value when compared to FeNi particles without a coating. Overall, our study emphasizes the potential advantages of FeNi@SiO₂ particles in enhancing the efficiency of powder magnetic cores across diverse applications.

参考文献

Septiani E.L., Kikkawa J., Cao K.L.A., Hirano T., Okuda N., Matsumoto H., Enokido Y., Ogi T., Direct synthesis of submicron FeNi particles via spray pyrolysis using various reduction agents, Advanced Powder Technology, 32 (2021) 4263–4272.

https://doi.org/10.1016/j.apt.2021.09.031

- Septiani E.L., Kikkawa J., Cao K.L.A., Hirano T., Okuda N., Matsumoto H., Enokido Y., Ogi T., DC bias characteristic enhancement of the powder core by using densified submicron sized FeNi particles through spray pyrolysis, Journal of Materials Chemistry C, 10 (2022a) 8288– 8295. https://doi.org/10.1039/d1tc05917c
- Septiani E.L., Yamashita S., Cao K.L.A., Hirano T., Okuda N., Matsumoto H., Enokido Y., Ogi T., One-step aerosol synthesis of SiO₂-coated FeNi particles by using swirler connector-assisted spray pyrolysis, Industrial & Engineering Chemistry Research, 61 (2022b) 17885–17893. https://doi.org/10.1021/acs.iecr.2c02837
- Teleki A., Buesser B., Heine M.C., Krumeich F., Akhtar M.K., Pratsinis S.E., Role of gas–aerosol mixing during in situ coating of flame-made titania particles, Industrial & Engineering Chemistry Research, 48 (2009) 85–92. https://doi.org/10.1021/ie800226d

外部発表成果

論文発表

1. Ratnasari D., Septiani E.L., Cao K.L.A., Hirano T., Okuda N., Matsumoto H., Ogi T., Synthesis of

submicron-sized spherical silica-coated iron nickel particles with adjustable shell thickness via swirler connector-assisted spray pyrolysis, Langmuir, 39 (2023) 14063–14073.

https://doi.org/10.1021/acs.langmuir.3c01900

4-3 令和4年度 シンポジウム等の開催援助成果報告

Hosokawa Powder Technology Foundation ANNUAL REPORT No.31(2023) 224-227 /https://doi.org/10.14356/hptf.22001

HPTF22001

先進セラミックスの粉体プロセスに関する 第2回国際シンポジウム

The 2nd International Symposium on Powder Processing Technology for Advanced Ceramics (ISPPTAC-2)

開催期間 Date: 2023 年 11 月 15 日(水) ~ 16 日(木) Wednesday–Thursday, November 15–16, 2023

開催場所 Place: 横浜国立大学(横浜市保土ケ谷区常盤台 79-5)

Yokohama National University (79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan)

主催者代表 Organizer representative:多々見純一 Junichi TATAMI

ISPPTAC-2 実行委員長, 横浜国立大学教授 ISPPTAC-2 executive committee chair; Professor, Yokohama National University, Japan E-mail: tatami-junichi-xv@ynu.ac.jp

開催の目的

先進セラミックスの品質を向上させ、高機能 化を図るためには、その製造プロセスの精緻化 や革新的なプロセスの開発が必須である。セラ ミックスの製造は、多くの場合、出発原料であ る粉体を成形、焼結することで行われることか ら、粉体プロセスに関する研究開発が課題解決 のためのキーテクノロジーとなっている。この ような背景のもとに、ホソカワ粉体工学振興財 団の助成を受けて、先進セラミックスの粉体プ ロセスに関する第1回国際シンポジウムを 2019年11月20から21日に中国上海の中国科 学院上海珪酸塩研究所(Shanghai Institute of Ceramics, SICCAS)で開催し、先進セラミック スのために必要な粉体プロセスの科学と技術に ついて活発な議論がなされた。これをさらに発 展させることを念頭に、先進セラミックス分野 の粉体プロセスに関する国際的な研究開発動向 に焦点を当てた講演と討論を行うことを目的と して、第2回のシンポジウムを開催した.スコー プとしては、先進セラミックスの基盤的な粉体 プロセスに加えて、粉体特性評価や Additive Manufacturing などの革新的なプロセスに至る までを対象とした.

シンポジウムの規模、参加者数、内容等

本シンポジウムの開催に当たっては,一般社 団法人粉体工学会と,第1回のシンポジウムを 開催したセラミックスに関する研究において国 際的にも卓越した研究機関の一つである SICCASとが共同で計画・立案した.具体的に は,粉体工学会の粉体材料設計研究会代表の横

浜国立大学多々見純一教授とSICCASの Jingxian Zhang 教授が議長,同研究所の Dongling Jiang 教授と同学会元会長の大阪大学 内藤牧男名誉教授が名誉議長となり,組織委員 会を形成して運営に当たった.

シンポジウムでは、世界的に著名な研究者 14名を選定して招待講演を行う形式で開催し た.その結果、表1のように11月15日から 16日の午前までの1日半にわたって、14件の 講演とそれに対する質疑応答が行われた.また、 会期中には、NPO法人富士山からはじまる天 然顔料と粉砕の研究会の協力により、日本画 ワークショップを併催した.さらに、16日午 後には、横浜国立大学のセラミックスの粉体プ ロセスに関わる研究室の見学ツアーも行われ た.

講演者は、米国から1名、中国から3名、韓 国から2名、オーストラリアから1名、台湾か ら1名を招聘し、日本からは6名が招待講演を 行った. 全体の参加者は 70 名であり, 海外か らの参加者も学生を含めて約 30 名と大変盛況 な国際シンポジウムとなった. シンポジウム会 場の様子と参加者の集合写真を掲載する(**写真** 1,2). 会場は, 横浜国立大学附属図書館のメディ アホールであった.

講演内容はセラミックスの粉体プロセスに関 する基礎から応用,さらには,社会的課題解決 に関するものまで幅広く行われた.米国 Global Alliance for Technology and Society の Singh 博士 から行われた基調講演では,SDGs を達成する ためにセラミックスの粉体プロセス技術の高度 化が極めて重要な役割を果たすことが示され た.基礎的な招待講演としては,粉体プロセス に関する粒子シミュレーションからセラミック ス・スラリーや成形体の内部構造観察,微粒子 レベルの力学特性評価まで多岐に渡る内容で行 われた.プロセスに関する研究として,電池材 料や構造材料の高機能化に資する粒子集合構造

写真1 会議風景 Photo1 Symposium Scenery.

表1 シンポジウムのプログラム Table 1 Symposium program.

November 15 9:30–9:45 Opening ceremony				
 9:45–10:15 Technological innovation-driven strategies in achieving the sustainable development goals (SDGs) through net-zero GHG emissions Dr. Mrityunjay Singh (President and CEO, Global Alliance for Technology and Society, USA.) 				
10:15–10:45Static and dynamic rearrangement of high-nickel cathode particulates in dry coating for a high energy density lithium ion batteryProf. Ungyu Paik (Hanyang University, Korea)				
11:00–11:30 High throughput screening platform for discovery of inorganic luminescent materials: with two cases Prof. Qian Liu (Shanghai Institute of Ceramics, China)				
11:30–12:00 Photocurable suspension design for rapid manufacturing of 3D-structured ceramic components Prof. Motoyuki Iijima (Yokohama National University, Japan)				
13:30–14:00 New activities in self-healing of ceramics and their value Prof. Wataru Nakao (Yokohama National University, Japan)				
14:00–14:30 Recent particle scale simulation methods for powder processing Prof. Yansong Shen (University of New South Wales, Australia)				
14:30–15:00 Regulating Li electrodeposition for reliable and robust anode-free all-solid-state batteries Prof. Taeseup Song (Hanyang University, Korea)				
15:15–15:45 Development of high thermal conductivity Si ₃ N ₄ ceramics from tape casting and gas pressure sintering Prof. Jingxian Zhang (Shanghai Institute of Ceramics, China)				
15:45–16:15 Micro-scale mechanical properties of surface layer in ion-exchanged glass Dr. Tatsuki Ohji (National Institute of Advanced Industrial Science and Technology, Japan)				
November 16				
9:15–9:45 Fabrication of high performance Si ₃ N ₄ ceramics with radial grain alignment using centripetal sinter-forging Prof. Hua Tay Lin (GuangDong University of Technology, China)				
9:45–10:15 Room-temperature densification of MgO bulk ceramics with dispersed nitride phosphor particles Dr. Takuma Takahashi (Kanagawa Institute of Industrial Science and Technology, Japan)				
10:30–11:00 Long-term stability of zirconia and its applications Prof. Wei-Hsing Tuan (National Taiwan University, Taiwan)				
11:00–11:30 Smart powder processing for sustainable society Prof. Makio Naito (Osaka University, Japan)				
11:30–12:00 OCT operando observation of internal structure of ceramics for powder process informatics Prof. Junichi Tatami (Yokohama National University, Japan)				
12:00 Closing ceremony				
13:00 Laboratory Tour in Yokohama National University				

写真 2 会議参加者集合写真 **Photo 2** Conference participants group photo.

制御とともに、プロセス・インフォマティクス に資するハイ・スループット製造技術に関する 報告もなされた.また、セラミックス微粒子の 界面設計に基づく3次元造形など次世代のもの づくりについても招待講演がなされた.全ての 招待講演で活発な質疑応答が行われ、セラミッ クスの粉体プロセスに関する充実した討論が行 われた.

成果の概要

今回開催された第2回国際シンポジウムは, 先進セラミックスの粉体プロセスにフォーカス した他に類を見ない会議であり,非常に有意義 な講演・討論の場となった.このシンポジウム を通じて,粉体工学の国際共同研究の端緒とな るべく研究者間のグローバルなネットワークが さらに強化された.このネットワークを基盤と して,今後,一般社団法人粉体工学会が2025 年に開催する『第8回材料界面の評価と制御に 関する国際会議(ICCCI2025)』等において, 国際的な粉体工学に関わる研究の情報交換や国 際連携をさらに推進していくことを考えてい る.

最後に,本シンポジウムに助成をいただいた ホソカワ粉体工学振興財団に謝意を表する.

ホソカワ粉体工学振興財団年報 Hosokawa Powder Technology Foundation ANNUAL REPORT 令和5年度 (2023) No.31

発行日	2024年5月31日	Publication Date	May 31st, 2024
発行者	公益財団法人ホソカワ粉体工学振興財団	Publisher	Hosokawa Powder Technology Foundation
発行責任者	内藤 牧男	Editor in Chief	Makio Naito
事務局長	向河原 栄	Secretary General	Sakae Mukaigawara

公益財団法人 ホソカワ粉体工学振興財団

〒573-1132 大阪府枚方市招提田近1丁目9番地 (ホソカワミクロン株式会社内)

Hosokawa Powder Technology Foundation

1-9, Shodaitajika, Hirakata-shi, Osaka 573-1132, Japan (within Hosokawa Micron Corporation)

TEL: +81 (72) 867-1686, FAX: +81 (72) 867-1658 E-mail: contact_zainfo@hmc.hosokawa.com URL: https://www.kona.or.jp

